Normalized defining polynomial
\( x^{18} - 6 x^{17} - 184 x^{16} + 521 x^{15} + 15408 x^{14} + 3231 x^{13} - 672908 x^{12} - 1879383 x^{11} + 13386840 x^{10} + 79559527 x^{9} - 11020952 x^{8} - 1189453818 x^{7} - 3366477940 x^{6} + 1266037761 x^{5} + 28793196055 x^{4} + 77749789756 x^{3} + 105636350706 x^{2} + 76119957655 x + 23276366329 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(167934190485676783463200582052921330078125=5^{9}\cdot 7^{12}\cdot 41\cdot 389246193841^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41, 389246193841$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{15} + \frac{1}{7} a^{14} - \frac{1}{7} a^{13} - \frac{3}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7}$, $\frac{1}{25000104533454670368168908768974046425347029021154881917427} a^{17} - \frac{1627553366788049640881868673672029474794419566674939388178}{25000104533454670368168908768974046425347029021154881917427} a^{16} + \frac{8464491642436846403943549577487119467693991538585675852525}{25000104533454670368168908768974046425347029021154881917427} a^{15} - \frac{710878409472493242075967679244319249161460975995421566920}{25000104533454670368168908768974046425347029021154881917427} a^{14} - \frac{8423611136334091132599339749453845964577241783494359812707}{25000104533454670368168908768974046425347029021154881917427} a^{13} - \frac{7393816420089435490892986763247394557328695485071492287281}{25000104533454670368168908768974046425347029021154881917427} a^{12} + \frac{5015469678086256683931346112030530713292614746377610828131}{25000104533454670368168908768974046425347029021154881917427} a^{11} + \frac{8812766247232489796130239573268950014902275259016625892305}{25000104533454670368168908768974046425347029021154881917427} a^{10} + \frac{500161559226314768120227900572495139201155808982743003043}{25000104533454670368168908768974046425347029021154881917427} a^{9} + \frac{858091322773579198724132449624824240259304335521449322928}{25000104533454670368168908768974046425347029021154881917427} a^{8} + \frac{6446426817719155611425647539613981739495948305235672451573}{25000104533454670368168908768974046425347029021154881917427} a^{7} + \frac{1244987801072067586141063958243965507485997856719375612453}{25000104533454670368168908768974046425347029021154881917427} a^{6} - \frac{7805020364814528619777013956152287196569724938420653384394}{25000104533454670368168908768974046425347029021154881917427} a^{5} - \frac{8232640335218778756547999165517055504974291993211819254652}{25000104533454670368168908768974046425347029021154881917427} a^{4} - \frac{11614789002080999396143987282108918491836775315038192449875}{25000104533454670368168908768974046425347029021154881917427} a^{3} + \frac{440200632042864984737056408518347306801030884770848940447}{3571443504779238624024129824139149489335289860164983131061} a^{2} - \frac{1096948204801319447313204951429889116076689922504435981189}{25000104533454670368168908768974046425347029021154881917427} a + \frac{8379416217282421772532275684495824227151082384842805885007}{25000104533454670368168908768974046425347029021154881917427}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38237156620700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 41 | Data not computed | ||||||
| 389246193841 | Data not computed | ||||||