Normalized defining polynomial
\( x^{18} - 18 x^{16} - 8 x^{15} + 59 x^{14} + 194 x^{13} + 269 x^{12} - 668 x^{11} - 1645 x^{10} - 2406 x^{9} + 1558 x^{8} + 6584 x^{7} + 9918 x^{6} + 2652 x^{5} - 7905 x^{4} - 12080 x^{3} - 919 x^{2} + 4422 x + 281 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(164318006876410189488454893568=2^{18}\cdot 37^{6}\cdot 97^{3}\cdot 16361^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{4}{19} a^{15} + \frac{8}{19} a^{14} - \frac{4}{19} a^{13} + \frac{3}{19} a^{12} + \frac{9}{19} a^{11} - \frac{3}{19} a^{10} + \frac{4}{19} a^{9} + \frac{9}{19} a^{7} + \frac{2}{19} a^{6} - \frac{3}{19} a^{5} - \frac{6}{19} a^{4} + \frac{5}{19} a^{3} - \frac{5}{19} a^{2} - \frac{2}{19} a + \frac{8}{19}$, $\frac{1}{79276701503712665766580756414657} a^{17} - \frac{1670511864946590197485249775804}{79276701503712665766580756414657} a^{16} + \frac{13026629485404199502840113591866}{79276701503712665766580756414657} a^{15} + \frac{16206462299777745608439723532576}{79276701503712665766580756414657} a^{14} - \frac{38478959978539162482570353997976}{79276701503712665766580756414657} a^{13} + \frac{23678041015247638757371868898568}{79276701503712665766580756414657} a^{12} - \frac{21619454157846614827478344160473}{79276701503712665766580756414657} a^{11} - \frac{28257907527878919936245648123840}{79276701503712665766580756414657} a^{10} + \frac{4366372309630536498958184424751}{79276701503712665766580756414657} a^{9} - \frac{12738353131152601711628853964650}{79276701503712665766580756414657} a^{8} + \frac{21851570654346836290013432408290}{79276701503712665766580756414657} a^{7} + \frac{5418811848046149293423318997551}{79276701503712665766580756414657} a^{6} - \frac{38822729231906021272100951852372}{79276701503712665766580756414657} a^{5} + \frac{12005882196515625415280174434365}{79276701503712665766580756414657} a^{4} + \frac{8736336199992133383033803338859}{79276701503712665766580756414657} a^{3} + \frac{18618964555062995582595516635004}{79276701503712665766580756414657} a^{2} - \frac{18567932999048266795757474418855}{79276701503712665766580756414657} a - \frac{4073059698383864705949866993193}{79276701503712665766580756414657}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101551328.486 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n836 are not computed |
| Character table for t18n836 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 16361 | Data not computed | ||||||