Normalized defining polynomial
\( x^{18} - 5 x^{17} + 37 x^{15} - 50 x^{14} - 54 x^{13} + 130 x^{12} - 18 x^{11} - 35 x^{10} - 49 x^{9} - 4 x^{8} + 97 x^{7} - 76 x^{6} + 43 x^{5} - 15 x^{4} + 2 x^{3} + 2 x^{2} - 4 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15855320438788354657081=13^{2}\cdot 9685993193^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 9685993193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{108939409} a^{17} + \frac{37324562}{108939409} a^{16} - \frac{38844841}{108939409} a^{15} - \frac{10825849}{108939409} a^{14} - \frac{23046490}{108939409} a^{13} + \frac{20164331}{108939409} a^{12} + \frac{21795503}{108939409} a^{11} - \frac{48170542}{108939409} a^{10} - \frac{9956038}{108939409} a^{9} + \frac{44745440}{108939409} a^{8} - \frac{42663335}{108939409} a^{7} + \frac{39796269}{108939409} a^{6} + \frac{16169302}{108939409} a^{5} - \frac{37743324}{108939409} a^{4} + \frac{10225047}{108939409} a^{3} - \frac{18810687}{108939409} a^{2} + \frac{17391939}{108939409} a - \frac{32732065}{108939409}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22900.369309 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 92897280 |
| The 150 conjugacy class representatives for t18n964 are not computed |
| Character table for t18n964 is not computed |
Intermediate fields
| 9.9.9685993193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 9685993193 | Data not computed | ||||||