Normalized defining polynomial
\( x^{18} - 9 x^{17} + 38 x^{16} - 100 x^{15} + 98 x^{14} + 350 x^{13} - 1531 x^{12} + 2738 x^{11} - 1678 x^{10} - 3743 x^{9} + 10841 x^{8} - 13278 x^{7} + 8010 x^{6} + 273 x^{5} - 4413 x^{4} + 3465 x^{3} - 1304 x^{2} + 242 x - 17 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14927338168600003276536320000=2^{12}\cdot 5^{4}\cdot 37^{8}\cdot 59^{4}\cdot 137\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{10} a^{14} + \frac{3}{10} a^{13} - \frac{1}{2} a^{12} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{10} a^{7} - \frac{2}{5} a^{6} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{3}{10} a^{2} - \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{50} a^{15} - \frac{7}{25} a^{13} - \frac{12}{25} a^{12} - \frac{3}{10} a^{11} + \frac{1}{5} a^{10} + \frac{8}{25} a^{9} + \frac{7}{50} a^{8} + \frac{23}{50} a^{7} - \frac{9}{25} a^{6} - \frac{3}{50} a^{5} + \frac{1}{25} a^{4} - \frac{1}{25} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{21}{50}$, $\frac{1}{57630409300} a^{16} - \frac{2}{14407602325} a^{15} + \frac{1913822271}{57630409300} a^{14} - \frac{13396755757}{57630409300} a^{13} + \frac{6206666238}{14407602325} a^{12} + \frac{5039566953}{11526081860} a^{11} + \frac{661507783}{28815204650} a^{10} + \frac{19419518569}{57630409300} a^{9} - \frac{5960750803}{57630409300} a^{8} - \frac{17340084617}{57630409300} a^{7} - \frac{17451980699}{57630409300} a^{6} + \frac{2730460313}{28815204650} a^{5} + \frac{1661809277}{57630409300} a^{4} + \frac{5294863829}{14407602325} a^{3} + \frac{872011623}{2881520465} a^{2} - \frac{6643292619}{57630409300} a - \frac{789837563}{57630409300}$, $\frac{1}{288152046500} a^{17} - \frac{1}{288152046500} a^{16} + \frac{382764443}{57630409300} a^{15} + \frac{7}{14407602325} a^{14} + \frac{46310193253}{288152046500} a^{13} + \frac{26093261529}{288152046500} a^{12} + \frac{62447040321}{288152046500} a^{11} - \frac{28949781769}{288152046500} a^{10} + \frac{735753029}{14407602325} a^{9} - \frac{29532670119}{144076023250} a^{8} - \frac{11785877209}{144076023250} a^{7} + \frac{56188283633}{288152046500} a^{6} + \frac{39888253659}{288152046500} a^{5} - \frac{28015821529}{57630409300} a^{4} - \frac{16206304382}{72038011625} a^{3} - \frac{115083302599}{288152046500} a^{2} - \frac{26230823799}{72038011625} a - \frac{5528862941}{288152046500}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70998808.9904 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | $18$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 59 | Data not computed | ||||||
| $137$ | 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 137.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 137.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 137.6.0.1 | $x^{6} - x + 29$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |