Normalized defining polynomial
\( x^{18} - 2 x^{17} - 20 x^{16} + 43 x^{15} + 145 x^{14} - 357 x^{13} - 407 x^{12} + 1369 x^{11} + 61 x^{10} - 2231 x^{9} + 1333 x^{8} + 932 x^{7} - 1192 x^{6} + 161 x^{5} + 363 x^{4} - 253 x^{3} + 46 x^{2} + 8 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1463561466371433349940873=7^{12}\cdot 41^{5}\cdot 97^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{41} a^{16} + \frac{17}{41} a^{15} + \frac{18}{41} a^{14} + \frac{9}{41} a^{13} - \frac{17}{41} a^{12} - \frac{6}{41} a^{11} + \frac{19}{41} a^{10} - \frac{4}{41} a^{9} - \frac{18}{41} a^{8} + \frac{2}{41} a^{7} - \frac{18}{41} a^{6} + \frac{20}{41} a^{5} + \frac{13}{41} a^{4} - \frac{3}{41} a^{3} + \frac{4}{41} a^{2} - \frac{19}{41} a - \frac{20}{41}$, $\frac{1}{1774066683090283} a^{17} - \frac{16975241569929}{1774066683090283} a^{16} + \frac{327952358329138}{1774066683090283} a^{15} + \frac{841937909091234}{1774066683090283} a^{14} - \frac{692035983058856}{1774066683090283} a^{13} - \frac{829220367407723}{1774066683090283} a^{12} - \frac{430073265890865}{1774066683090283} a^{11} + \frac{253545468590095}{1774066683090283} a^{10} - \frac{654047089037186}{1774066683090283} a^{9} - \frac{670321327765834}{1774066683090283} a^{8} + \frac{22138701177480}{1774066683090283} a^{7} + \frac{53683696152052}{1774066683090283} a^{6} - \frac{869395369886658}{1774066683090283} a^{5} + \frac{557985687913540}{1774066683090283} a^{4} - \frac{692970756468791}{1774066683090283} a^{3} - \frac{435897787113868}{1774066683090283} a^{2} + \frac{179547325033879}{1774066683090283} a + \frac{685459388425519}{1774066683090283}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238603.851728 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n401 |
| Character table for t18n401 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.9548777.1, 9.5.467890073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 41 | Data not computed | ||||||
| 97 | Data not computed | ||||||