Properties

Label 18.10.1461042292...5693.4
Degree $18$
Signature $[10, 4]$
Discriminant $19^{16}\cdot 37^{3}$
Root discriminant $25.01$
Ramified primes $19, 37$
Class number $1$
Class group Trivial
Galois group 18T460

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -26, 80, 11, -496, 1181, -1301, 433, 798, -1341, 933, -214, -203, 237, -124, 41, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 41*x^16 - 124*x^15 + 237*x^14 - 203*x^13 - 214*x^12 + 933*x^11 - 1341*x^10 + 798*x^9 + 433*x^8 - 1301*x^7 + 1181*x^6 - 496*x^5 + 11*x^4 + 80*x^3 - 26*x^2 - x + 1)
 
gp: K = bnfinit(x^18 - 9*x^17 + 41*x^16 - 124*x^15 + 237*x^14 - 203*x^13 - 214*x^12 + 933*x^11 - 1341*x^10 + 798*x^9 + 433*x^8 - 1301*x^7 + 1181*x^6 - 496*x^5 + 11*x^4 + 80*x^3 - 26*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 41 x^{16} - 124 x^{15} + 237 x^{14} - 203 x^{13} - 214 x^{12} + 933 x^{11} - 1341 x^{10} + 798 x^{9} + 433 x^{8} - 1301 x^{7} + 1181 x^{6} - 496 x^{5} + 11 x^{4} + 80 x^{3} - 26 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14610422921440715006545693=19^{16}\cdot 37^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} - \frac{7}{37} a^{13} + \frac{7}{37} a^{12} + \frac{12}{37} a^{11} + \frac{18}{37} a^{10} - \frac{3}{37} a^{9} + \frac{6}{37} a^{8} + \frac{5}{37} a^{7} - \frac{6}{37} a^{6} + \frac{7}{37} a^{5} - \frac{9}{37} a^{4} - \frac{17}{37} a^{3} - \frac{15}{37} a^{2} + \frac{1}{37} a + \frac{16}{37}$, $\frac{1}{37} a^{15} - \frac{5}{37} a^{13} - \frac{13}{37} a^{12} - \frac{9}{37} a^{11} + \frac{12}{37} a^{10} - \frac{15}{37} a^{9} + \frac{10}{37} a^{8} - \frac{8}{37} a^{7} + \frac{2}{37} a^{6} + \frac{3}{37} a^{5} - \frac{6}{37} a^{4} + \frac{14}{37} a^{3} + \frac{7}{37} a^{2} - \frac{14}{37} a + \frac{1}{37}$, $\frac{1}{206719} a^{16} - \frac{8}{206719} a^{15} + \frac{1152}{206719} a^{14} - \frac{7924}{206719} a^{13} + \frac{41087}{206719} a^{12} + \frac{62845}{206719} a^{11} - \frac{59353}{206719} a^{10} - \frac{19325}{206719} a^{9} - \frac{79874}{206719} a^{8} + \frac{1744}{206719} a^{7} - \frac{74221}{206719} a^{6} + \frac{15543}{206719} a^{5} + \frac{64463}{206719} a^{4} + \frac{92188}{206719} a^{3} + \frac{81365}{206719} a^{2} + \frac{87036}{206719} a - \frac{28634}{206719}$, $\frac{1}{206719} a^{17} + \frac{1088}{206719} a^{15} + \frac{1292}{206719} a^{14} - \frac{22305}{206719} a^{13} - \frac{21897}{206719} a^{12} + \frac{29969}{206719} a^{11} - \frac{80711}{206719} a^{10} - \frac{27755}{206719} a^{9} - \frac{17091}{206719} a^{8} - \frac{60269}{206719} a^{7} + \frac{41932}{206719} a^{6} - \frac{17912}{206719} a^{5} - \frac{12265}{206719} a^{4} - \frac{8007}{206719} a^{3} - \frac{88920}{206719} a^{2} + \frac{47497}{206719} a - \frac{22353}{206719}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 796152.620634 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T460:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 80 conjugacy class representatives for t18n460 are not computed
Character table for t18n460 is not computed

Intermediate fields

3.3.361.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ $18$ $18$ R $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
37Data not computed