Properties

Label 18.10.1461042292...5693.2
Degree $18$
Signature $[10, 4]$
Discriminant $19^{16}\cdot 37^{3}$
Root discriminant $25.01$
Ramified primes $19, 37$
Class number $1$
Class group Trivial
Galois group 18T264

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 8, 41, 25, -83, -101, 27, 1, -166, -51, 173, 26, -141, -9, 68, 6, -14, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 - 14*x^16 + 6*x^15 + 68*x^14 - 9*x^13 - 141*x^12 + 26*x^11 + 173*x^10 - 51*x^9 - 166*x^8 + x^7 + 27*x^6 - 101*x^5 - 83*x^4 + 25*x^3 + 41*x^2 + 8*x - 1)
 
gp: K = bnfinit(x^18 - x^17 - 14*x^16 + 6*x^15 + 68*x^14 - 9*x^13 - 141*x^12 + 26*x^11 + 173*x^10 - 51*x^9 - 166*x^8 + x^7 + 27*x^6 - 101*x^5 - 83*x^4 + 25*x^3 + 41*x^2 + 8*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} - 14 x^{16} + 6 x^{15} + 68 x^{14} - 9 x^{13} - 141 x^{12} + 26 x^{11} + 173 x^{10} - 51 x^{9} - 166 x^{8} + x^{7} + 27 x^{6} - 101 x^{5} - 83 x^{4} + 25 x^{3} + 41 x^{2} + 8 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14610422921440715006545693=19^{16}\cdot 37^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{5}{11} a^{14} + \frac{1}{11} a^{13} - \frac{3}{11} a^{12} + \frac{5}{11} a^{11} + \frac{1}{11} a^{9} + \frac{4}{11} a^{8} - \frac{2}{11} a^{7} - \frac{5}{11} a^{6} - \frac{3}{11} a^{5} - \frac{1}{11} a^{4} - \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{16} - \frac{2}{11} a^{14} + \frac{2}{11} a^{13} + \frac{1}{11} a^{12} + \frac{3}{11} a^{11} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} - \frac{4}{11} a^{8} - \frac{4}{11} a^{7} + \frac{5}{11} a^{6} - \frac{5}{11} a^{5} + \frac{4}{11} a^{4} + \frac{3}{11} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a - \frac{2}{11}$, $\frac{1}{143899081579} a^{17} + \frac{4818803212}{143899081579} a^{16} + \frac{466224554}{13081734689} a^{15} - \frac{63666002227}{143899081579} a^{14} + \frac{5466367366}{143899081579} a^{13} + \frac{3112918384}{13081734689} a^{12} - \frac{57423186779}{143899081579} a^{11} + \frac{51400352653}{143899081579} a^{10} - \frac{30315509683}{143899081579} a^{9} + \frac{1612976302}{143899081579} a^{8} + \frac{2680345410}{13081734689} a^{7} + \frac{2366474367}{13081734689} a^{6} - \frac{24737484844}{143899081579} a^{5} - \frac{50550017131}{143899081579} a^{4} - \frac{55982610819}{143899081579} a^{3} - \frac{66073212520}{143899081579} a^{2} - \frac{54132005157}{143899081579} a + \frac{44612240994}{143899081579}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 764952.400547 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T264:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1152
The 32 conjugacy class representatives for t18n264
Character table for t18n264 is not computed

Intermediate fields

3.3.361.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ $18$ $18$ R $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
$37$$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$