Normalized defining polynomial
\( x^{18} - 6 x^{17} + 2 x^{16} + 73 x^{15} - 248 x^{14} + 287 x^{13} + 261 x^{12} - 1401 x^{11} + 2256 x^{10} - 2010 x^{9} + 924 x^{8} + 481 x^{7} - 1802 x^{6} + 2007 x^{5} - 871 x^{4} - 128 x^{3} + 217 x^{2} - 45 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14610422921440715006545693=19^{16}\cdot 37^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{3}{11} a^{14} + \frac{5}{11} a^{13} - \frac{5}{11} a^{12} + \frac{1}{11} a^{11} - \frac{3}{11} a^{9} - \frac{4}{11} a^{8} - \frac{3}{11} a^{7} - \frac{4}{11} a^{6} + \frac{4}{11} a^{5} + \frac{3}{11} a^{3} - \frac{5}{11} a^{2} - \frac{3}{11} a - \frac{5}{11}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{14} - \frac{1}{11} a^{13} - \frac{3}{11} a^{12} + \frac{3}{11} a^{11} - \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{4}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} + \frac{1}{11} a^{5} + \frac{3}{11} a^{4} + \frac{4}{11} a^{3} + \frac{4}{11} a^{2} - \frac{3}{11} a - \frac{4}{11}$, $\frac{1}{5021066049241} a^{17} - \frac{218767000845}{5021066049241} a^{16} + \frac{56719975667}{5021066049241} a^{15} + \frac{1142735617891}{5021066049241} a^{14} - \frac{48386134636}{5021066049241} a^{13} + \frac{160550834821}{5021066049241} a^{12} - \frac{1502281963686}{5021066049241} a^{11} - \frac{145977254731}{456460549931} a^{10} - \frac{1142779583680}{5021066049241} a^{9} + \frac{1472080905880}{5021066049241} a^{8} - \frac{1585507057928}{5021066049241} a^{7} + \frac{1948540086827}{5021066049241} a^{6} - \frac{746064601105}{5021066049241} a^{5} - \frac{564829820377}{5021066049241} a^{4} + \frac{1391492556260}{5021066049241} a^{3} + \frac{1185979808779}{5021066049241} a^{2} - \frac{1745282294966}{5021066049241} a + \frac{2356185278059}{5021066049241}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 731326.099824 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 32 conjugacy class representatives for t18n264 |
| Character table for t18n264 is not computed |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 37 | Data not computed | ||||||