Normalized defining polynomial
\( x^{18} - 5 x^{16} - 144 x^{14} + 174 x^{12} + 3854 x^{10} - 3304 x^{8} - 8528 x^{6} + 8442 x^{4} - 495 x^{2} - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142701555280888482876925673472=2^{18}\cdot 3^{9}\cdot 37^{6}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{1}{16}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{5}{16} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{16} a$, $\frac{1}{96} a^{14} + \frac{1}{96} a^{12} - \frac{1}{32} a^{10} - \frac{3}{32} a^{8} - \frac{1}{4} a^{7} - \frac{13}{96} a^{6} - \frac{1}{4} a^{5} + \frac{47}{96} a^{4} + \frac{1}{4} a^{3} - \frac{41}{96} a^{2} - \frac{1}{4} a + \frac{11}{32}$, $\frac{1}{192} a^{15} - \frac{1}{192} a^{14} - \frac{5}{192} a^{13} - \frac{1}{192} a^{12} - \frac{1}{64} a^{11} - \frac{3}{64} a^{10} - \frac{5}{64} a^{9} + \frac{15}{64} a^{8} + \frac{47}{192} a^{7} - \frac{35}{192} a^{6} + \frac{65}{192} a^{5} - \frac{71}{192} a^{4} - \frac{53}{192} a^{3} + \frac{5}{192} a^{2} + \frac{25}{64} a + \frac{1}{64}$, $\frac{1}{8782386964416} a^{16} - \frac{9105554177}{2195596741104} a^{14} - \frac{1}{32} a^{13} - \frac{978113755}{37531568224} a^{12} - \frac{1}{16} a^{11} + \frac{17124046943}{1463731160736} a^{10} - \frac{3}{32} a^{9} + \frac{729621482419}{4391193482208} a^{8} - \frac{3}{16} a^{7} + \frac{468550459775}{2195596741104} a^{6} + \frac{7}{32} a^{5} - \frac{178400043061}{4391193482208} a^{4} - \frac{1}{2} a^{3} + \frac{154085884223}{487910386912} a^{2} + \frac{13}{32} a + \frac{134077903289}{975820773824}$, $\frac{1}{8782386964416} a^{17} + \frac{9319382065}{8782386964416} a^{15} - \frac{1}{192} a^{14} + \frac{2341348019}{225189409344} a^{13} + \frac{5}{192} a^{12} - \frac{11493504887}{2927462321472} a^{11} + \frac{1}{64} a^{10} - \frac{873578572585}{8782386964416} a^{9} + \frac{5}{64} a^{8} - \frac{1464934871329}{8782386964416} a^{7} - \frac{47}{192} a^{6} - \frac{3421487203913}{8782386964416} a^{5} - \frac{65}{192} a^{4} - \frac{981384643537}{2927462321472} a^{3} + \frac{53}{192} a^{2} + \frac{83072874493}{243955193456} a - \frac{25}{64}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 204554287.631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for t18n623 are not computed |
| Character table for t18n623 is not computed |
Intermediate fields
| 3.3.564.1, 3.3.148.1, 9.9.9087459412032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.6 | $x^{6} + 2 x^{5} + 4 x^{3} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $47$ | 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 47.6.3.1 | $x^{6} - 94 x^{4} + 2209 x^{2} - 415292$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.1 | $x^{6} - 94 x^{4} + 2209 x^{2} - 415292$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |