Normalized defining polynomial
\( x^{18} - 4 x^{17} - 24 x^{16} + 120 x^{15} + 189 x^{14} - 1648 x^{13} + 155 x^{12} + 12484 x^{11} - 12466 x^{10} - 50728 x^{9} + 85024 x^{8} + 89376 x^{7} - 240584 x^{6} + 5264 x^{5} + 238688 x^{4} - 116032 x^{3} + 25856 x^{2} - 89088 x + 53248 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13530650209602087833780282855424=2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{56} a^{12} - \frac{3}{28} a^{11} - \frac{1}{14} a^{9} - \frac{11}{56} a^{8} - \frac{13}{28} a^{7} - \frac{3}{8} a^{6} + \frac{9}{28} a^{5} - \frac{9}{28} a^{4} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{112} a^{13} - \frac{1}{14} a^{11} - \frac{1}{28} a^{10} + \frac{3}{16} a^{9} + \frac{5}{28} a^{8} - \frac{37}{112} a^{7} + \frac{1}{28} a^{6} + \frac{3}{56} a^{5} - \frac{9}{28} a^{4} - \frac{1}{14} a^{3} - \frac{5}{14} a^{2} + \frac{3}{14} a - \frac{3}{7}$, $\frac{1}{448} a^{14} - \frac{1}{112} a^{12} - \frac{1}{8} a^{11} - \frac{5}{64} a^{10} + \frac{1}{112} a^{9} - \frac{81}{448} a^{8} - \frac{1}{28} a^{7} + \frac{101}{224} a^{6} + \frac{1}{7} a^{5} + \frac{11}{56} a^{4} - \frac{1}{14} a^{3} + \frac{1}{8} a^{2} + \frac{3}{28} a + \frac{3}{7}$, $\frac{1}{1792} a^{15} - \frac{1}{896} a^{14} + \frac{1}{448} a^{13} + \frac{61}{1792} a^{11} - \frac{13}{128} a^{10} + \frac{335}{1792} a^{9} + \frac{113}{896} a^{8} - \frac{263}{896} a^{7} - \frac{23}{64} a^{6} - \frac{101}{224} a^{5} - \frac{15}{112} a^{4} - \frac{37}{224} a^{3} - \frac{1}{4} a^{2} - \frac{25}{56} a + \frac{5}{14}$, $\frac{1}{3584} a^{16} + \frac{1}{448} a^{13} - \frac{3}{3584} a^{12} - \frac{31}{896} a^{11} - \frac{29}{3584} a^{10} + \frac{1}{14} a^{9} + \frac{45}{256} a^{8} + \frac{41}{112} a^{7} - \frac{47}{224} a^{6} + \frac{1}{28} a^{5} - \frac{177}{448} a^{4} - \frac{17}{224} a^{3} - \frac{13}{112} a^{2} + \frac{17}{56} a - \frac{1}{2}$, $\frac{1}{172567525615326507008} a^{17} + \frac{323090837916409}{2696367587739476672} a^{16} - \frac{53414534141145}{21570940701915813376} a^{15} + \frac{2581037247393393}{3081562957416544768} a^{14} - \frac{391815511507654819}{172567525615326507008} a^{13} + \frac{49303509150081959}{6163125914833089536} a^{12} - \frac{14317786731277153349}{172567525615326507008} a^{11} - \frac{194960552879912551}{10785470350957906688} a^{10} - \frac{18329985683274557857}{86283762807663253504} a^{9} - \frac{1652859083371577905}{10785470350957906688} a^{8} + \frac{186117640767385771}{674091896934869168} a^{7} - \frac{15296267257903879}{770390739354136192} a^{6} - \frac{8627541963054712441}{21570940701915813376} a^{5} + \frac{4695720289721894471}{10785470350957906688} a^{4} - \frac{660691149249075187}{5392735175478953344} a^{3} - \frac{634346665298641579}{2696367587739476672} a^{2} - \frac{79048800497066009}{168522974233717292} a - \frac{9643779680212687}{168522974233717292}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2117395204.62 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 41 | Data not computed | ||||||