Normalized defining polynomial
\( x^{18} - 8 x^{17} - 7 x^{16} + 268 x^{15} - 925 x^{14} - 102 x^{13} + 7776 x^{12} - 19220 x^{11} + 14670 x^{10} + 15362 x^{9} - 48195 x^{8} + 71380 x^{7} - 74449 x^{6} - 1652 x^{5} + 123525 x^{4} - 119096 x^{3} - 2336 x^{2} + 51566 x - 18509 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13530650209602087833780282855424=2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{5}{12}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{5}{12} a$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{11} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{5}{12} a^{2} - \frac{1}{2}$, $\frac{1}{168} a^{15} - \frac{5}{168} a^{14} - \frac{1}{42} a^{13} - \frac{1}{168} a^{12} - \frac{25}{168} a^{11} + \frac{25}{168} a^{10} + \frac{3}{14} a^{9} + \frac{17}{168} a^{8} - \frac{17}{84} a^{7} + \frac{17}{84} a^{6} + \frac{5}{14} a^{5} - \frac{23}{84} a^{4} - \frac{1}{168} a^{3} + \frac{41}{168} a^{2} - \frac{8}{21} a + \frac{1}{168}$, $\frac{1}{168} a^{16} - \frac{1}{168} a^{14} - \frac{1}{24} a^{13} - \frac{1}{84} a^{12} + \frac{1}{14} a^{11} - \frac{1}{24} a^{10} + \frac{5}{56} a^{9} + \frac{23}{168} a^{8} + \frac{1}{42} a^{7} + \frac{17}{84} a^{6} - \frac{13}{84} a^{5} + \frac{11}{24} a^{4} - \frac{5}{42} a^{3} + \frac{29}{168} a^{2} + \frac{31}{168} a + \frac{11}{56}$, $\frac{1}{31583504191114777111479528} a^{17} - \frac{12992023202342193670877}{7895876047778694277869882} a^{16} - \frac{22713063588728495762875}{10527834730371592370493176} a^{15} + \frac{443776065571662532043785}{31583504191114777111479528} a^{14} - \frac{32296961835992824477801}{1127982292539813468267126} a^{13} + \frac{425467500034296438999347}{15791752095557388555739764} a^{12} + \frac{2306281491587299057365287}{10527834730371592370493176} a^{11} - \frac{5429398560664525223072605}{31583504191114777111479528} a^{10} - \frac{7029755538600323196620503}{31583504191114777111479528} a^{9} + \frac{419832370897640568131675}{2255964585079626936534252} a^{8} + \frac{2352209847785783046598231}{15791752095557388555739764} a^{7} + \frac{2387292133661827736754229}{15791752095557388555739764} a^{6} - \frac{10301777782327851275278523}{31583504191114777111479528} a^{5} - \frac{686905912945321373454641}{7895876047778694277869882} a^{4} + \frac{12933562334013900909175393}{31583504191114777111479528} a^{3} - \frac{1100897504109979841492713}{31583504191114777111479528} a^{2} + \frac{553799546009306182691367}{1503976390053084624356168} a - \frac{5152231889761728889828073}{15791752095557388555739764}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1715110594.83 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.6.5.2 | $x^{6} + 246$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |