Normalized defining polynomial
\( x^{18} - 4 x^{17} - 27 x^{16} + 97 x^{15} + 346 x^{14} - 825 x^{13} - 3675 x^{12} + 4726 x^{11} + 26892 x^{10} - 28348 x^{9} - 104218 x^{8} + 101955 x^{7} + 247344 x^{6} - 207718 x^{5} - 500820 x^{4} + 649205 x^{3} + 34356 x^{2} - 358992 x + 139968 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1261890771353825087664258755140125=3^{22}\cdot 5^{3}\cdot 11^{8}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{13} + \frac{1}{3} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{66} a^{15} + \frac{1}{66} a^{14} - \frac{2}{11} a^{13} - \frac{8}{33} a^{12} + \frac{17}{66} a^{11} - \frac{2}{11} a^{10} + \frac{17}{66} a^{9} - \frac{5}{33} a^{8} - \frac{3}{11} a^{7} + \frac{25}{66} a^{6} - \frac{23}{66} a^{5} + \frac{19}{66} a^{3} + \frac{5}{33} a^{2} + \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{264} a^{16} + \frac{3}{88} a^{14} - \frac{5}{88} a^{13} + \frac{1}{4} a^{12} - \frac{39}{88} a^{11} - \frac{59}{264} a^{10} - \frac{21}{44} a^{9} + \frac{3}{22} a^{8} - \frac{1}{22} a^{7} + \frac{3}{44} a^{6} + \frac{37}{88} a^{5} + \frac{1}{33} a^{4} - \frac{7}{44} a^{3} + \frac{9}{22} a^{2} - \frac{35}{264} a + \frac{5}{22}$, $\frac{1}{5348143567695967116317133212736} a^{17} - \frac{13345364308837257977463454}{83564743245249486192455206449} a^{16} - \frac{494328831810815647613844683}{66026463798715643411322632256} a^{15} - \frac{356954194608705713337789677483}{5348143567695967116317133212736} a^{14} + \frac{318708612836397343848148889447}{2674071783847983558158566606368} a^{13} + \frac{386967697794552827295960414709}{1782714522565322372105711070912} a^{12} + \frac{146490593506407099907667746667}{1782714522565322372105711070912} a^{11} - \frac{484985219520979746538199212099}{2674071783847983558158566606368} a^{10} - \frac{14733707947579809611881931161}{49519847849036732558491974192} a^{9} + \frac{80224929871318062116971777877}{1337035891923991779079283303184} a^{8} + \frac{884710215178008502277832465547}{2674071783847983558158566606368} a^{7} + \frac{61037348726798113763409090409}{1782714522565322372105711070912} a^{6} + \frac{114976152478371369306043019045}{445678630641330593026427767728} a^{5} - \frac{238511203243450458147196228043}{2674071783847983558158566606368} a^{4} + \frac{45541808693655801864459342343}{445678630641330593026427767728} a^{3} + \frac{1366564653902105053238714426693}{5348143567695967116317133212736} a^{2} + \frac{58843374511203757981086532439}{222839315320665296513213883864} a - \frac{218437510194217279679272871}{4126653987419727713207664516}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81575512609.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.12.22.44 | $x^{12} + 36 x^{11} - 27 x^{10} - 33 x^{9} - 18 x^{8} + 9 x^{7} - 24 x^{6} - 36 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $107$ | 107.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 107.12.6.1 | $x^{12} + 14700516 x^{6} - 14025517307 x^{2} + 54026292666564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |