Normalized defining polynomial
\( x^{18} + 2x^{16} - 32x^{14} + 27x^{12} + 147x^{10} - 229x^{8} + 27x^{6} + 34x^{4} - 3x^{2} - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[10, 4]$ |
| |
| Discriminant: |
\(1256584347701942722269184\)
\(\medspace = 2^{12}\cdot 7^{12}\cdot 53^{6}\)
|
| |
| Root discriminant: | \(21.82\) |
| |
| Galois root discriminant: | $2^{15/8}7^{2/3}53^{1/2}\approx 97.71649256380418$ | ||
| Ramified primes: |
\(2\), \(7\), \(53\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{582}a^{14}+\frac{41}{291}a^{12}-\frac{115}{582}a^{10}-\frac{21}{97}a^{8}-\frac{1}{2}a^{7}+\frac{31}{582}a^{6}-\frac{1}{2}a^{5}+\frac{25}{582}a^{4}+\frac{85}{582}a^{2}-\frac{1}{2}a+\frac{227}{582}$, $\frac{1}{582}a^{15}+\frac{41}{291}a^{13}-\frac{115}{582}a^{11}-\frac{21}{97}a^{9}-\frac{1}{2}a^{8}+\frac{31}{582}a^{7}-\frac{1}{2}a^{6}+\frac{25}{582}a^{5}+\frac{85}{582}a^{3}-\frac{1}{2}a^{2}+\frac{227}{582}a$, $\frac{1}{1746}a^{16}+\frac{218}{873}a^{12}-\frac{4}{873}a^{10}-\frac{202}{873}a^{8}+\frac{17}{291}a^{6}-\frac{85}{291}a^{4}-\frac{341}{1746}a^{2}-\frac{286}{873}$, $\frac{1}{1746}a^{17}+\frac{218}{873}a^{13}-\frac{4}{873}a^{11}-\frac{202}{873}a^{9}+\frac{17}{291}a^{7}-\frac{85}{291}a^{5}-\frac{341}{1746}a^{3}-\frac{286}{873}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{92}{873}a^{16}+\frac{103}{291}a^{14}-\frac{2644}{873}a^{12}-\frac{1351}{873}a^{10}+\frac{15563}{873}a^{8}-\frac{318}{97}a^{6}-\frac{2221}{97}a^{4}+\frac{1877}{873}a^{2}+\frac{2678}{873}$, $\frac{107}{873}a^{16}+\frac{16}{97}a^{14}-\frac{3523}{873}a^{12}+\frac{5282}{873}a^{10}+\frac{12833}{873}a^{8}-\frac{11752}{291}a^{6}+\frac{7745}{291}a^{4}-\frac{676}{873}a^{2}-\frac{2326}{873}$, $a$, $\frac{14}{97}a^{17}+\frac{1}{6}a^{15}-\frac{2855}{582}a^{13}+\frac{4469}{582}a^{11}+\frac{3723}{194}a^{9}-\frac{29747}{582}a^{7}+\frac{14875}{582}a^{5}+\frac{4045}{582}a^{3}-\frac{938}{291}a$, $\frac{1003}{1746}a^{17}+\frac{325}{291}a^{15}-\frac{32225}{1746}a^{13}+\frac{28753}{1746}a^{11}+\frac{146137}{1746}a^{9}-\frac{26245}{194}a^{7}+\frac{4355}{194}a^{5}+\frac{12695}{873}a^{3}-\frac{989}{1746}a$, $\frac{71}{582}a^{16}+\frac{185}{582}a^{14}-\frac{1090}{291}a^{12}+\frac{94}{97}a^{10}+\frac{5722}{291}a^{8}-\frac{5006}{291}a^{6}-\frac{3425}{291}a^{4}+\frac{2863}{582}a^{2}+\frac{73}{194}$, $\frac{5}{873}a^{16}-\frac{49}{582}a^{14}-\frac{355}{873}a^{12}+\frac{2738}{873}a^{10}-\frac{616}{873}a^{8}-\frac{1506}{97}a^{6}+\frac{1598}{97}a^{4}+\frac{1214}{873}a^{2}-\frac{677}{1746}$, $\frac{161}{873}a^{17}+\frac{76}{873}a^{16}+\frac{65}{291}a^{15}+\frac{185}{582}a^{14}-\frac{5479}{873}a^{13}-\frac{4327}{1746}a^{12}+\frac{16303}{1746}a^{11}-\frac{3931}{1746}a^{10}+\frac{22130}{873}a^{9}+\frac{142}{9}a^{8}-\frac{36529}{582}a^{7}+\frac{650}{291}a^{6}+\frac{16313}{582}a^{5}-\frac{14813}{582}a^{4}+\frac{13267}{1746}a^{3}+\frac{727}{873}a^{2}-\frac{1558}{873}a+\frac{1624}{873}$, $\frac{19}{97}a^{16}+\frac{277}{582}a^{14}-\frac{3533}{582}a^{12}+\frac{1571}{582}a^{10}+\frac{5897}{194}a^{8}-\frac{18779}{582}a^{6}-\frac{6401}{582}a^{4}+\frac{2713}{582}a^{2}+\frac{436}{291}$, $\frac{641}{1746}a^{17}-\frac{5}{1746}a^{16}+\frac{199}{291}a^{15}+\frac{16}{291}a^{14}-\frac{10352}{873}a^{13}+\frac{227}{873}a^{12}+\frac{9970}{873}a^{11}-\frac{3143}{1746}a^{10}+\frac{45847}{873}a^{9}+\frac{200}{873}a^{8}-\frac{52295}{582}a^{7}+\frac{1535}{194}a^{6}+\frac{13015}{582}a^{5}-\frac{1875}{194}a^{4}+\frac{8621}{1746}a^{3}+\frac{2750}{873}a^{2}-\frac{2203}{1746}a+\frac{104}{873}$, $\frac{161}{873}a^{17}+\frac{103}{291}a^{16}+\frac{65}{291}a^{15}+\frac{63}{97}a^{14}-\frac{5479}{873}a^{13}-\frac{3323}{291}a^{12}+\frac{16303}{1746}a^{11}+\frac{3340}{291}a^{10}+\frac{22130}{873}a^{9}+\frac{28907}{582}a^{8}-\frac{36529}{582}a^{7}-\frac{17317}{194}a^{6}+\frac{16313}{582}a^{5}+\frac{2592}{97}a^{4}+\frac{13267}{1746}a^{3}+\frac{4079}{582}a^{2}-\frac{1558}{873}a-\frac{881}{291}$, $\frac{20}{873}a^{17}-\frac{79}{291}a^{16}+\frac{61}{291}a^{15}-\frac{105}{194}a^{14}-\frac{563}{1746}a^{13}+\frac{5095}{582}a^{12}-\frac{3745}{873}a^{11}-\frac{2062}{291}a^{10}+\frac{10183}{1746}a^{9}-\frac{11968}{291}a^{8}+\frac{3363}{194}a^{7}+\frac{11743}{194}a^{6}-\frac{5421}{194}a^{5}-\frac{250}{97}a^{4}+\frac{1751}{873}a^{3}-\frac{4907}{582}a^{2}+\frac{2165}{873}a-\frac{22}{291}$, $\frac{17}{291}a^{17}-\frac{47}{1746}a^{16}+\frac{9}{97}a^{15}-\frac{13}{582}a^{14}-\frac{559}{291}a^{13}+\frac{1627}{1746}a^{12}+\frac{1375}{582}a^{11}-\frac{1498}{873}a^{10}+\frac{4777}{582}a^{9}-\frac{2890}{873}a^{8}-\frac{1665}{97}a^{7}+\frac{1073}{97}a^{6}+\frac{975}{194}a^{5}-\frac{1325}{194}a^{4}+\frac{572}{291}a^{3}-\frac{2374}{873}a^{2}+\frac{479}{291}a+\frac{571}{1746}$
|
| |
| Regulator: | \( 289447.222908 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{4}\cdot 289447.222908 \cdot 1}{2\cdot\sqrt{1256584347701942722269184}}\cr\approx \mathstrut & 0.206045435757 \end{aligned}\]
Galois group
$C_2^4:(S_3\times A_4)$ (as 18T268):
| A solvable group of order 1152 |
| The 24 conjugacy class representatives for $C_2^4:(S_3\times A_4)$ |
| Character table for $C_2^4:(S_3\times A_4)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.4.186314968102014976.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{6}$ | R | ${\href{/padicField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 2.6.2.12a11.1 | $x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{9} + 7 x^{8} + 8 x^{7} + 7 x^{6} + 10 x^{5} + 8 x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 3$ | $2$ | $6$ | $12$ | 12T58 | $$[2, 2, 2, 2]^{6}$$ | |
|
\(7\)
| 7.3.3.6a1.3 | $x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ |
| 7.3.3.6a1.3 | $x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ | |
|
\(53\)
| 53.3.1.0a1.1 | $x^{3} + 3 x + 51$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 53.3.1.0a1.1 | $x^{3} + 3 x + 51$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 53.3.2.3a1.2 | $x^{6} + 6 x^{4} + 102 x^{3} + 9 x^{2} + 306 x + 2654$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 53.3.2.3a1.2 | $x^{6} + 6 x^{4} + 102 x^{3} + 9 x^{2} + 306 x + 2654$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |