Properties

Label 18.10.1217816758...9257.3
Degree $18$
Signature $[10, 4]$
Discriminant $3^{24}\cdot 73^{3}\cdot 577^{4}$
Root discriminant $36.33$
Ramified primes $3, 73, 577$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T767

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2141, 2280, 23886, 3198, -28359, -11169, -10367, -5301, 4083, 1763, 1686, -306, -404, 168, -33, -8, 3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 3*x^16 - 8*x^15 - 33*x^14 + 168*x^13 - 404*x^12 - 306*x^11 + 1686*x^10 + 1763*x^9 + 4083*x^8 - 5301*x^7 - 10367*x^6 - 11169*x^5 - 28359*x^4 + 3198*x^3 + 23886*x^2 + 2280*x - 2141)
 
gp: K = bnfinit(x^18 - 3*x^17 + 3*x^16 - 8*x^15 - 33*x^14 + 168*x^13 - 404*x^12 - 306*x^11 + 1686*x^10 + 1763*x^9 + 4083*x^8 - 5301*x^7 - 10367*x^6 - 11169*x^5 - 28359*x^4 + 3198*x^3 + 23886*x^2 + 2280*x - 2141, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} + 3 x^{16} - 8 x^{15} - 33 x^{14} + 168 x^{13} - 404 x^{12} - 306 x^{11} + 1686 x^{10} + 1763 x^{9} + 4083 x^{8} - 5301 x^{7} - 10367 x^{6} - 11169 x^{5} - 28359 x^{4} + 3198 x^{3} + 23886 x^{2} + 2280 x - 2141 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12178167588536804870357659257=3^{24}\cdot 73^{3}\cdot 577^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 73, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{648697231994358935356273324003903869459} a^{17} + \frac{51470766886810619602167090426936649082}{648697231994358935356273324003903869459} a^{16} - \frac{60192044935629294537929935133769100774}{648697231994358935356273324003903869459} a^{15} + \frac{96172420444229081082052898099246003315}{648697231994358935356273324003903869459} a^{14} - \frac{19647090162567471279900664299894988984}{648697231994358935356273324003903869459} a^{13} - \frac{78425212990913391894254490748168023005}{648697231994358935356273324003903869459} a^{12} + \frac{53461710341889524375021424815257699189}{648697231994358935356273324003903869459} a^{11} - \frac{13578004669682080922102964884869581948}{216232410664786311785424441334634623153} a^{10} + \frac{27661875029014507881939606542896069506}{216232410664786311785424441334634623153} a^{9} - \frac{52242899420423402947012120927547944076}{216232410664786311785424441334634623153} a^{8} - \frac{159355538854203489740291203939519006352}{648697231994358935356273324003903869459} a^{7} - \frac{108560608006578200922793756223156721055}{648697231994358935356273324003903869459} a^{6} + \frac{2836462132638785951441609866711047546}{216232410664786311785424441334634623153} a^{5} - \frac{15894574594537217814704346241154707487}{648697231994358935356273324003903869459} a^{4} + \frac{11629382537759571461620271757317635932}{216232410664786311785424441334634623153} a^{3} + \frac{215979832994114404337844357119169720397}{648697231994358935356273324003903869459} a^{2} + \frac{172594564710316384886319947622494172109}{648697231994358935356273324003903869459} a + \frac{69282127248871338913351422676994742349}{216232410664786311785424441334634623153}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22710484.6481 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T767:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 110 conjugacy class representatives for t18n767 are not computed
Character table for t18n767 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.22384826361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ R $18$ $18$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ $18$ $18$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.12.1$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
3.9.12.1$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
73Data not computed
577Data not computed