Normalized defining polynomial
\( x^{18} - 3 x^{17} - 18 x^{16} + 26 x^{15} + 201 x^{14} - 99 x^{13} - 1109 x^{12} + 534 x^{11} + 2730 x^{10} - 1878 x^{9} - 2367 x^{8} + 1770 x^{7} - 283 x^{6} + 873 x^{5} + 1017 x^{4} + 398 x^{3} - 369 x^{2} - 2133 x + 197 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12178167588536804870357659257=3^{24}\cdot 73^{3}\cdot 577^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} + \frac{3}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{16} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{7}{16} a^{7} - \frac{1}{16} a^{6} + \frac{5}{16} a^{5} + \frac{5}{16} a^{4} - \frac{3}{16} a^{3} + \frac{3}{16} a^{2} + \frac{1}{8} a + \frac{1}{16}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} + \frac{3}{32} a^{8} + \frac{1}{4} a^{7} + \frac{3}{16} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{3}{16} a^{3} + \frac{15}{32} a^{2} - \frac{1}{32} a + \frac{15}{32}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{5}{64} a^{9} - \frac{21}{64} a^{8} - \frac{9}{32} a^{7} + \frac{11}{32} a^{6} - \frac{1}{8} a^{5} + \frac{7}{32} a^{4} - \frac{11}{64} a^{3} - \frac{9}{32} a^{2} - \frac{9}{32} a + \frac{15}{64}$, $\frac{1}{128} a^{16} - \frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{3}{128} a^{13} - \frac{1}{32} a^{11} + \frac{3}{128} a^{10} - \frac{1}{8} a^{9} - \frac{61}{128} a^{8} - \frac{3}{16} a^{7} - \frac{15}{64} a^{6} - \frac{21}{64} a^{5} + \frac{39}{128} a^{4} - \frac{7}{128} a^{3} - \frac{1}{2} a^{2} - \frac{31}{128} a - \frac{15}{128}$, $\frac{1}{245079633373620188271872} a^{17} - \frac{230880599921462010165}{61269908343405047067968} a^{16} + \frac{652430605140332669561}{122539816686810094135936} a^{15} - \frac{76126070225195273301}{30634954171702523533984} a^{14} + \frac{998389888651476000593}{245079633373620188271872} a^{13} + \frac{3544050366480064318967}{61269908343405047067968} a^{12} - \frac{8188919499201019205873}{245079633373620188271872} a^{11} - \frac{49560123246869544043433}{245079633373620188271872} a^{10} - \frac{14865456843130606088077}{245079633373620188271872} a^{9} + \frac{83722544922138759992071}{245079633373620188271872} a^{8} - \frac{46507891130549475338619}{122539816686810094135936} a^{7} - \frac{389847560518619179543}{1914684635731407720874} a^{6} + \frac{105871097208421614666597}{245079633373620188271872} a^{5} - \frac{10620835627571656685579}{61269908343405047067968} a^{4} - \frac{11591933178223566883787}{245079633373620188271872} a^{3} + \frac{33981204555901926106649}{245079633373620188271872} a^{2} + \frac{28831380541644203122699}{122539816686810094135936} a - \frac{2135025884485779973035}{245079633373620188271872}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31861811.7637 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||