Normalized defining polynomial
\( x^{18} - 9 x^{17} + 24 x^{16} - 108 x^{15} + 51 x^{14} + 1938 x^{13} + 25 x^{12} + 20355 x^{11} - 34395 x^{10} - 47780 x^{9} - 380205 x^{8} - 651636 x^{7} + 1096380 x^{6} + 4986567 x^{5} + 3882756 x^{4} - 9132658 x^{3} - 6404370 x^{2} + 5503983 x + 1227113 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1159892457286612080082548844598517=3^{24}\cdot 7^{12}\cdot 197^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{16} + \frac{1}{8} a^{15} + \frac{1}{8} a^{14} + \frac{1}{8} a^{13} - \frac{3}{8} a^{11} + \frac{3}{8} a^{10} - \frac{1}{4} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{22070108234025388192497636415069999413967644800176934289777989696} a^{17} + \frac{183566903850520970855462218954611977449076942512520350098714403}{5517527058506347048124409103767499853491911200044233572444497424} a^{16} - \frac{842445235516609422106191742886030803734887886917164391837190715}{5517527058506347048124409103767499853491911200044233572444497424} a^{15} + \frac{69127060127208342749389085487476097349267626757249267234160895}{2758763529253173524062204551883749926745955600022116786222248712} a^{14} + \frac{1309732047859709061155251344136874880365317596872115783117502283}{22070108234025388192497636415069999413967644800176934289777989696} a^{13} - \frac{10124867264468437683607410609104341200099058801416941816776158663}{22070108234025388192497636415069999413967644800176934289777989696} a^{12} - \frac{1593184970425206045858737209046071003870877175813900433032609757}{11035054117012694096248818207534999706983822400088467144888994848} a^{11} + \frac{1071305308900305887414377768395838479961460391534865432508948673}{22070108234025388192497636415069999413967644800176934289777989696} a^{10} - \frac{901722997156109552678571204973512589627362980841207355315288931}{11035054117012694096248818207534999706983822400088467144888994848} a^{9} + \frac{4752657686703360601347817189163202843556101274271758676965580079}{11035054117012694096248818207534999706983822400088467144888994848} a^{8} - \frac{10880590856414175591082888884901339027998482288248566938600645943}{22070108234025388192497636415069999413967644800176934289777989696} a^{7} + \frac{4393122051451435434021787239231980329796487725282129625702719369}{22070108234025388192497636415069999413967644800176934289777989696} a^{6} - \frac{3085305622216754793215188300008753768748059316399603857015334151}{22070108234025388192497636415069999413967644800176934289777989696} a^{5} + \frac{966293959576881976677386919244193395356936915396311505934703741}{5517527058506347048124409103767499853491911200044233572444497424} a^{4} + \frac{1016373705896271285288420955329011233759828840999130289987864785}{2758763529253173524062204551883749926745955600022116786222248712} a^{3} + \frac{3146005152466101931600417468774995189409295146330925334925280347}{11035054117012694096248818207534999706983822400088467144888994848} a^{2} - \frac{2189741837048147691486674831588111749552010068173751203809523177}{5517527058506347048124409103767499853491911200044233572444497424} a - \frac{2006764054302696669727070088858617668646303096438230692238840645}{22070108234025388192497636415069999413967644800176934289777989696}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5488097532.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 96 conjugacy class representatives for t18n459 are not computed |
| Character table for t18n459 is not computed |
Intermediate fields
| 3.3.3969.2, \(\Q(\zeta_{9})^+\), 3.3.3969.1, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 197 | Data not computed | ||||||