Normalized defining polynomial
\( x^{18} - 6 x^{17} + 4 x^{16} + 18 x^{15} - 43 x^{14} + 268 x^{13} - 375 x^{12} - 702 x^{11} + 773 x^{10} - 2580 x^{9} + 9942 x^{8} + 4626 x^{7} - 15466 x^{6} - 9672 x^{5} - 86265 x^{4} + 56318 x^{3} + 219287 x^{2} - 51510 x - 125441 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(108988713031592961639231782912=2^{18}\cdot 37^{7}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3581778034594360981751149687723732226329249} a^{17} - \frac{1514930602543534787145002308173025090488124}{3581778034594360981751149687723732226329249} a^{16} + \frac{1117723779078764767948839872416962766226003}{3581778034594360981751149687723732226329249} a^{15} - \frac{506848876650470052197910105128270913265358}{3581778034594360981751149687723732226329249} a^{14} + \frac{675530516898871167502982492896035213273464}{3581778034594360981751149687723732226329249} a^{13} + \frac{200872747593586169705776857115560477547752}{3581778034594360981751149687723732226329249} a^{12} - \frac{468726781807516578064970779720718825211478}{3581778034594360981751149687723732226329249} a^{11} + \frac{524885941485036636157982813311813449624202}{3581778034594360981751149687723732226329249} a^{10} - \frac{803135021648896395243079256751715104353625}{3581778034594360981751149687723732226329249} a^{9} + \frac{565698624979025648730391673029262656104941}{3581778034594360981751149687723732226329249} a^{8} - \frac{16491289782861688603009632273227041488900}{3581778034594360981751149687723732226329249} a^{7} - \frac{1712137806846825143872087695937948543058359}{3581778034594360981751149687723732226329249} a^{6} + \frac{752243522263992086700823263280395991185790}{3581778034594360981751149687723732226329249} a^{5} - \frac{1680972970024151036629382589670023909690582}{3581778034594360981751149687723732226329249} a^{4} - \frac{883084356964402125940577539948824575809142}{3581778034594360981751149687723732226329249} a^{3} - \frac{358733472420959831861442106098877077564848}{3581778034594360981751149687723732226329249} a^{2} - \frac{1421014515479010695781058532235176327706820}{3581778034594360981751149687723732226329249} a - \frac{1184866720074649725693436427680394228863311}{3581778034594360981751149687723732226329249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 84539761.4479 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n880 are not computed |
| Character table for t18n880 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 16361 | Data not computed | ||||||