Normalized defining polynomial
\( x^{18} - 90 x^{14} - 120 x^{13} - 40 x^{12} + 2187 x^{10} + 5832 x^{9} + 5832 x^{8} + 2592 x^{7} - 7587 x^{6} - 32076 x^{5} - 53460 x^{4} - 47520 x^{3} - 23760 x^{2} - 6336 x - 704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1037975570290369941555665658537125609472=2^{30}\cdot 3^{18}\cdot 7\cdot 11^{5}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{14} + \frac{3}{8} a^{12} + \frac{11}{32} a^{10} + \frac{1}{8} a^{9} - \frac{3}{8} a^{8} - \frac{21}{64} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{19}{64} a^{2} - \frac{3}{16} a - \frac{7}{16}$, $\frac{1}{512} a^{15} - \frac{1}{256} a^{14} + \frac{3}{64} a^{13} - \frac{7}{32} a^{12} + \frac{75}{256} a^{11} - \frac{41}{128} a^{10} - \frac{21}{64} a^{9} + \frac{7}{32} a^{8} - \frac{21}{512} a^{7} - \frac{71}{256} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{83}{512} a^{3} - \frac{83}{256} a^{2} - \frac{1}{128} a - \frac{25}{64}$, $\frac{1}{4096} a^{16} - \frac{1}{1024} a^{15} + \frac{7}{1024} a^{14} - \frac{5}{128} a^{13} + \frac{443}{2048} a^{12} - \frac{93}{256} a^{11} + \frac{5}{128} a^{10} + \frac{31}{64} a^{9} + \frac{267}{4096} a^{8} - \frac{25}{1024} a^{7} + \frac{311}{1024} a^{6} + \frac{1}{8} a^{5} + \frac{1197}{4096} a^{4} - \frac{1}{2} a^{3} + \frac{233}{512} a^{2} - \frac{27}{64} a + \frac{89}{256}$, $\frac{1}{32768} a^{17} + \frac{1}{16384} a^{16} + \frac{1}{8192} a^{15} + \frac{1}{4096} a^{14} - \frac{37}{16384} a^{13} - \frac{67}{8192} a^{12} - \frac{9}{512} a^{11} - \frac{9}{256} a^{10} - \frac{117}{32768} a^{9} + \frac{2799}{16384} a^{8} - \frac{3935}{8192} a^{7} + \frac{485}{4096} a^{6} + \frac{173}{32768} a^{5} + \frac{519}{16384} a^{4} + \frac{1769}{4096} a^{3} + \frac{847}{2048} a^{2} + \frac{209}{2048} a + \frac{11}{1024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14601233752700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| 3.3.361.1, 6.6.91745984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.24.247 | $x^{12} - 4 x^{11} + 4 x^{10} - 4 x^{9} + 8 x^{7} - 8 x^{6} + 8 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T143 | $[2, 2, 2, 5/2, 3, 3]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.5.1 | $x^{6} - 11$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |