Normalized defining polynomial
\( x^{18} - 18 x^{16} - 8 x^{15} + 45 x^{14} + 96 x^{13} + 468 x^{12} - 288 x^{11} - 1605 x^{10} + 512 x^{9} - 2394 x^{8} - 4536 x^{7} + 11599 x^{6} + 8064 x^{5} - 16296 x^{4} - 3584 x^{3} + 12096 x^{2} - 3584 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1011167298805722181508656609099776=2^{39}\cdot 3^{18}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{128} a^{14} - \frac{1}{64} a^{12} - \frac{1}{16} a^{11} + \frac{13}{128} a^{10} - \frac{1}{4} a^{9} - \frac{7}{32} a^{8} - \frac{1}{4} a^{7} - \frac{5}{128} a^{6} + \frac{11}{64} a^{4} - \frac{7}{16} a^{3} - \frac{17}{128} a^{2} - \frac{7}{16}$, $\frac{1}{512} a^{15} - \frac{1}{256} a^{13} - \frac{1}{64} a^{12} - \frac{51}{512} a^{11} - \frac{1}{16} a^{10} - \frac{23}{128} a^{9} - \frac{1}{16} a^{8} - \frac{69}{512} a^{7} + \frac{43}{256} a^{5} - \frac{23}{64} a^{4} + \frac{239}{512} a^{3} + \frac{9}{64} a$, $\frac{1}{32768} a^{16} + \frac{27}{16384} a^{14} - \frac{1}{4096} a^{13} + \frac{3933}{32768} a^{12} - \frac{15}{1024} a^{11} - \frac{769}{8192} a^{10} - \frac{65}{1024} a^{9} + \frac{6299}{32768} a^{8} - \frac{7}{128} a^{7} - \frac{3809}{16384} a^{6} - \frac{311}{4096} a^{5} - \frac{12609}{32768} a^{4} + \frac{143}{512} a^{3} - \frac{927}{2048} a^{2} - \frac{113}{512}$, $\frac{1}{293084870759215726592} a^{17} + \frac{16563290313557}{146542435379607863296} a^{16} + \frac{60212457282329627}{146542435379607863296} a^{15} - \frac{98000994419027723}{73271217689803931648} a^{14} + \frac{7439069038383786509}{293084870759215726592} a^{13} + \frac{7670406378441499633}{146542435379607863296} a^{12} + \frac{3759436777587901263}{73271217689803931648} a^{11} - \frac{3883768037346608601}{36635608844901965824} a^{10} - \frac{61798926876408229029}{293084870759215726592} a^{9} - \frac{12723816414905253641}{146542435379607863296} a^{8} + \frac{8306222983555355167}{146542435379607863296} a^{7} + \frac{15809521303350908637}{73271217689803931648} a^{6} - \frac{28913972705630856561}{293084870759215726592} a^{5} + \frac{67822253946953103435}{146542435379607863296} a^{4} + \frac{8190082491168071865}{18317804422450982912} a^{3} + \frac{4437511952020533333}{9158902211225491456} a^{2} - \frac{316492243120906609}{4579451105612745728} a + \frac{126876531593586491}{2289725552806372864}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12976547921.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.30.273 | $x^{12} + 2 x^{10} - 3 x^{8} + 4 x^{6} - 5 x^{4} - 6 x^{2} - 1$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.9.8.2 | $x^{9} - 7$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ | |