Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 144 x^{15} + 324 x^{14} - 540 x^{13} + 652 x^{12} - 510 x^{11} + 1083 x^{10} - 5063 x^{9} + 14373 x^{8} - 25830 x^{7} + 33250 x^{6} - 29334 x^{5} + 17736 x^{4} - 7750 x^{3} + 5775 x^{2} - 1875 x + 625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-998220592474975337089609728=-\,2^{12}\cdot 3^{21}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{30} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{15} a^{3} - \frac{1}{5} a^{2} + \frac{1}{10} a + \frac{1}{6}$, $\frac{1}{30} a^{10} - \frac{1}{10} a^{7} - \frac{13}{30} a^{4} - \frac{1}{30} a$, $\frac{1}{30} a^{11} - \frac{1}{10} a^{8} - \frac{13}{30} a^{5} - \frac{1}{30} a^{2}$, $\frac{1}{60} a^{12} - \frac{1}{60} a^{10} + \frac{1}{10} a^{8} - \frac{13}{60} a^{6} - \frac{1}{30} a^{4} + \frac{1}{3} a^{3} + \frac{9}{20} a^{2} - \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{60} a^{13} - \frac{1}{60} a^{11} - \frac{1}{5} a^{8} - \frac{7}{60} a^{7} - \frac{1}{30} a^{5} - \frac{1}{6} a^{4} - \frac{1}{4} a^{3} - \frac{7}{30} a^{2} + \frac{9}{20} a - \frac{1}{2}$, $\frac{1}{300} a^{14} - \frac{1}{300} a^{13} - \frac{1}{300} a^{12} + \frac{1}{300} a^{11} + \frac{1}{150} a^{9} - \frac{37}{300} a^{8} + \frac{13}{300} a^{7} - \frac{1}{150} a^{6} + \frac{13}{75} a^{5} - \frac{5}{12} a^{4} - \frac{121}{300} a^{3} + \frac{47}{300} a^{2} + \frac{7}{20} a - \frac{1}{6}$, $\frac{1}{119700} a^{15} - \frac{1}{13300} a^{14} + \frac{577}{119700} a^{13} + \frac{28}{4275} a^{12} + \frac{641}{59850} a^{11} + \frac{1187}{119700} a^{10} - \frac{611}{39900} a^{9} + \frac{7193}{39900} a^{8} - \frac{307}{4275} a^{7} - \frac{2357}{119700} a^{6} - \frac{5011}{119700} a^{5} + \frac{169}{5700} a^{4} - \frac{2629}{23940} a^{3} - \frac{1829}{8550} a^{2} + \frac{719}{2394} a + \frac{629}{4788}$, $\frac{1}{119700} a^{16} + \frac{97}{119700} a^{14} + \frac{391}{119700} a^{13} + \frac{757}{119700} a^{12} - \frac{1639}{119700} a^{11} + \frac{29}{3990} a^{10} + \frac{7}{2850} a^{9} - \frac{778}{29925} a^{8} + \frac{28807}{119700} a^{7} + \frac{4616}{29925} a^{6} - \frac{5063}{19950} a^{5} - \frac{7139}{119700} a^{4} + \frac{6113}{119700} a^{3} + \frac{58063}{119700} a^{2} + \frac{5}{4788} a - \frac{169}{532}$, $\frac{1}{1096687025563500} a^{17} - \frac{762221147}{548343512781750} a^{16} - \frac{729518429}{219337405112700} a^{15} + \frac{570634731367}{365562341854500} a^{14} - \frac{2992745943371}{1096687025563500} a^{13} - \frac{26677511239}{4386748102254} a^{12} - \frac{4159763574577}{274171756390875} a^{11} + \frac{3254897744137}{219337405112700} a^{10} + \frac{1958366525387}{274171756390875} a^{9} - \frac{241111472122363}{1096687025563500} a^{8} - \frac{20002641390407}{182781170927250} a^{7} - \frac{109907053265}{461762958132} a^{6} + \frac{1175306599807}{3481546112900} a^{5} + \frac{526876662208321}{1096687025563500} a^{4} + \frac{6387073907017}{365562341854500} a^{3} + \frac{1326992086577}{5222319169350} a^{2} + \frac{10372641727307}{43867481022540} a + \frac{1063882492417}{8773496204508}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{36491442}{45809817275} a^{17} + \frac{126131796251}{18278117092725} a^{16} - \frac{614874759544}{18278117092725} a^{15} + \frac{271929247088}{2611159584675} a^{14} - \frac{4125822315196}{18278117092725} a^{13} + \frac{6558873767312}{18278117092725} a^{12} - \frac{1461387243896}{3655623418545} a^{11} + \frac{677615541916}{2611159584675} a^{10} - \frac{13465040477906}{18278117092725} a^{9} + \frac{13618200857606}{3655623418545} a^{8} - \frac{187580651001592}{18278117092725} a^{7} + \frac{318988733619524}{18278117092725} a^{6} - \frac{381990284139028}{18278117092725} a^{5} + \frac{58078882703384}{3655623418545} a^{4} - \frac{128908900203536}{18278117092725} a^{3} + \frac{18521069199796}{18278117092725} a^{2} - \frac{80694717886}{34815461129} a + \frac{206504804825}{243708227903} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1153844.97919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.18252.1 x3, 3.3.169.1, 6.0.999406512.1, 6.0.5913648.2 x2, 6.0.771147.1, 9.3.6080389219008.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.5913648.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |