Normalized defining polynomial
\( x^{18} - 9 x^{17} + 30 x^{16} - 36 x^{15} - 66 x^{14} + 378 x^{13} - 795 x^{12} + 870 x^{11} + 1293 x^{10} - 8434 x^{9} + 20088 x^{8} - 30084 x^{7} + 32202 x^{6} - 25995 x^{5} + 6084 x^{4} + 12516 x^{3} + 42 x^{2} - 8085 x + 5929 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-995320331802267761719062711=-\,3^{21}\cdot 7^{9}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{21} a^{8} + \frac{1}{7} a^{7} + \frac{2}{21} a^{6} + \frac{8}{21} a^{5} - \frac{3}{7} a^{4} + \frac{1}{3} a^{3} - \frac{5}{21} a^{2} - \frac{1}{3}$, $\frac{1}{63} a^{9} + \frac{1}{7} a^{6} - \frac{4}{21} a^{5} - \frac{5}{21} a^{4} + \frac{1}{7} a^{3} + \frac{5}{21} a^{2} + \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{63} a^{10} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{5}{21} a^{5} + \frac{1}{7} a^{4} - \frac{2}{21} a^{3} + \frac{1}{3} a^{2} + \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{63} a^{11} + \frac{1}{21} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{4} - \frac{1}{3} a^{3} + \frac{10}{63} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{2079} a^{12} - \frac{2}{693} a^{11} - \frac{4}{693} a^{10} + \frac{16}{2079} a^{9} - \frac{4}{693} a^{8} - \frac{5}{693} a^{7} - \frac{38}{231} a^{6} + \frac{163}{693} a^{5} + \frac{13}{63} a^{4} + \frac{604}{2079} a^{3} + \frac{19}{231} a^{2} + \frac{4}{11} a - \frac{4}{27}$, $\frac{1}{43659} a^{13} + \frac{4}{43659} a^{12} - \frac{79}{14553} a^{11} - \frac{137}{43659} a^{10} - \frac{116}{43659} a^{9} - \frac{16}{1617} a^{8} - \frac{1187}{14553} a^{7} + \frac{673}{14553} a^{6} - \frac{1114}{4851} a^{5} + \frac{12022}{43659} a^{4} + \frac{16507}{43659} a^{3} - \frac{310}{2079} a^{2} + \frac{2488}{6237} a - \frac{31}{81}$, $\frac{1}{43659} a^{14} - \frac{1}{43659} a^{12} - \frac{8}{43659} a^{11} + \frac{20}{4851} a^{10} - \frac{94}{43659} a^{9} - \frac{233}{14553} a^{8} - \frac{692}{4851} a^{7} - \frac{16}{2079} a^{6} - \frac{1361}{43659} a^{5} + \frac{38}{441} a^{4} - \frac{18043}{43659} a^{3} - \frac{244}{567} a^{2} + \frac{344}{693} a - \frac{20}{81}$, $\frac{1}{43659} a^{15} - \frac{4}{43659} a^{12} - \frac{19}{14553} a^{11} - \frac{1}{189} a^{10} - \frac{122}{43659} a^{9} - \frac{47}{4851} a^{8} + \frac{29}{4851} a^{7} + \frac{688}{6237} a^{6} - \frac{103}{539} a^{5} - \frac{177}{539} a^{4} + \frac{18509}{43659} a^{3} - \frac{268}{2079} a^{2} + \frac{316}{2079} a - \frac{22}{81}$, $\frac{1}{39424077} a^{16} - \frac{8}{39424077} a^{15} - \frac{4}{4380453} a^{14} + \frac{8}{804573} a^{13} - \frac{8422}{39424077} a^{12} + \frac{5008}{4380453} a^{11} + \frac{69514}{39424077} a^{10} - \frac{124655}{39424077} a^{9} + \frac{12658}{1460151} a^{8} + \frac{3613600}{39424077} a^{7} - \frac{2015252}{39424077} a^{6} - \frac{13399}{625779} a^{5} + \frac{7471580}{39424077} a^{4} + \frac{883727}{5632011} a^{3} - \frac{64913}{625779} a^{2} + \frac{140323}{804573} a - \frac{14152}{73143}$, $\frac{1}{1222146387} a^{17} + \frac{1}{174592341} a^{16} - \frac{955}{407382129} a^{15} + \frac{6173}{1222146387} a^{14} + \frac{11003}{1222146387} a^{13} - \frac{2507}{135794043} a^{12} - \frac{9244295}{1222146387} a^{11} + \frac{4580623}{1222146387} a^{10} - \frac{2789729}{407382129} a^{9} - \frac{22911866}{1222146387} a^{8} - \frac{11713853}{1222146387} a^{7} + \frac{59408141}{407382129} a^{6} - \frac{342888094}{1222146387} a^{5} - \frac{228871471}{1222146387} a^{4} + \frac{2946749}{19399149} a^{3} + \frac{4076813}{15872031} a^{2} - \frac{7971959}{24941763} a + \frac{62282}{755811}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3533553.0226 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), 3.1.231.1 x3, 6.0.12326391.1, 9.1.2075751918009.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |