Normalized defining polynomial
\( x^{18} - 9 x^{17} + 57 x^{16} - 252 x^{15} + 870 x^{14} - 2394 x^{13} + 5430 x^{12} - 10272 x^{11} + 16395 x^{10} - 22135 x^{9} + 24795 x^{8} - 22344 x^{7} + 15654 x^{6} - 8202 x^{5} + 2970 x^{4} - 576 x^{3} - 3 x^{2} + 15 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-988277434054315200000000=-\,2^{12}\cdot 3^{31}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{1}{20} a^{8} + \frac{3}{20} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{3}{20} a^{3} + \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{1}{10}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{20} a^{7} - \frac{1}{10} a^{6} - \frac{1}{4} a^{5} - \frac{1}{10} a^{4} - \frac{3}{20} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{40} a^{14} - \frac{1}{40} a^{13} - \frac{1}{8} a^{11} - \frac{1}{40} a^{10} - \frac{1}{20} a^{9} + \frac{3}{40} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{9}{20} a^{5} + \frac{19}{40} a^{4} + \frac{3}{40} a^{3} + \frac{1}{20} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{40} a^{15} - \frac{1}{40} a^{13} - \frac{1}{40} a^{12} - \frac{3}{40} a^{10} + \frac{1}{40} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{8} a^{6} - \frac{3}{40} a^{5} + \frac{3}{10} a^{4} - \frac{13}{40} a^{3} - \frac{7}{40} a^{2} + \frac{1}{20} a - \frac{7}{40}$, $\frac{1}{241120} a^{16} - \frac{1}{30140} a^{15} + \frac{513}{120560} a^{14} + \frac{2507}{120560} a^{13} - \frac{2209}{120560} a^{12} - \frac{7463}{120560} a^{11} + \frac{649}{10960} a^{10} - \frac{17}{1370} a^{9} - \frac{1979}{48224} a^{8} - \frac{1355}{24112} a^{7} - \frac{29797}{120560} a^{6} + \frac{199}{30140} a^{5} + \frac{15139}{60280} a^{4} + \frac{1839}{10960} a^{3} + \frac{5251}{15070} a^{2} + \frac{21557}{120560} a + \frac{13327}{241120}$, $\frac{1}{63414560} a^{17} + \frac{123}{63414560} a^{16} - \frac{10413}{2882480} a^{15} + \frac{12999}{3170728} a^{14} + \frac{167451}{7926820} a^{13} - \frac{205687}{15853640} a^{12} - \frac{274277}{15853640} a^{11} - \frac{226381}{2882480} a^{10} + \frac{5421201}{63414560} a^{9} - \frac{5613787}{63414560} a^{8} - \frac{741977}{15853640} a^{7} - \frac{6253531}{31707280} a^{6} - \frac{120969}{3170728} a^{5} - \frac{2830321}{6341456} a^{4} - \frac{8948061}{31707280} a^{3} - \frac{12728179}{31707280} a^{2} + \frac{23238909}{63414560} a - \frac{5129079}{12682912}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{42777}{792682} a^{17} + \frac{727209}{1585364} a^{16} - \frac{4628299}{1585364} a^{15} + \frac{40336125}{3170728} a^{14} - \frac{140023965}{3170728} a^{13} + \frac{193312951}{1585364} a^{12} - \frac{890749413}{3170728} a^{11} + \frac{155891805}{288248} a^{10} - \frac{703835155}{792682} a^{9} + \frac{3927198645}{3170728} a^{8} - \frac{4611131985}{3170728} a^{7} + \frac{4465233271}{3170728} a^{6} - \frac{434775168}{396341} a^{5} + \frac{2112340875}{3170728} a^{4} - \frac{945083815}{3170728} a^{3} + \frac{142155609}{1585364} a^{2} - \frac{33776715}{3170728} a - \frac{2702009}{3170728} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88939.46667030624 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.573956280000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |