Normalized defining polynomial
\( x^{18} - 3 x^{17} + 36 x^{15} - 72 x^{14} - 108 x^{13} + 498 x^{12} - 390 x^{11} - 1764 x^{10} + 1160 x^{9} + 4896 x^{8} + 828 x^{7} - 3579 x^{6} - 4479 x^{5} + 756 x^{4} + 2892 x^{3} + 1056 x^{2} - 1728 x + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-977480813971145474830595007=-\,3^{30}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{64} a^{10} + \frac{7}{64} a^{7} - \frac{1}{32} a^{6} + \frac{7}{32} a^{5} + \frac{7}{64} a^{4} - \frac{1}{16} a^{3} + \frac{3}{16} a^{2}$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{12} + \frac{1}{64} a^{11} - \frac{1}{32} a^{10} - \frac{1}{64} a^{8} - \frac{1}{16} a^{7} + \frac{3}{32} a^{6} - \frac{1}{64} a^{5} + \frac{7}{32} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{3}{128} a^{12} - \frac{1}{128} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{3}{128} a^{8} + \frac{1}{128} a^{7} - \frac{5}{128} a^{6} + \frac{9}{128} a^{5} + \frac{17}{128} a^{4} - \frac{1}{16} a^{3} + \frac{3}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{16} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{15}{128} a^{4} + \frac{3}{32} a^{3} + \frac{3}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{18020469535911876608} a^{17} + \frac{12571137473967989}{4505117383977969152} a^{16} + \frac{17072549849943847}{4505117383977969152} a^{15} - \frac{8507659972985439}{2252558691988984576} a^{14} - \frac{941619596268447}{1126279345994492288} a^{13} - \frac{96594722674660271}{4505117383977969152} a^{12} + \frac{200362037784964055}{9010234767955938304} a^{11} - \frac{61922181660701473}{4505117383977969152} a^{10} - \frac{9864432295664869}{563139672997246144} a^{9} + \frac{80921493536077377}{2252558691988984576} a^{8} - \frac{137544272569241841}{2252558691988984576} a^{7} + \frac{86301813267200689}{4505117383977969152} a^{6} + \frac{704391421862768385}{18020469535911876608} a^{5} + \frac{482759124879405935}{2252558691988984576} a^{4} + \frac{192284796392871555}{4505117383977969152} a^{3} + \frac{73844851244440941}{563139672997246144} a^{2} + \frac{105349588656038665}{281569836498623072} a - \frac{2921903719375231}{35196229562327884}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9447907.468229258 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.3969.1, 3.1.1323.1, 6.0.110270727.2, 6.0.12252303.1, 9.3.1688134559643.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||