Normalized defining polynomial
\( x^{18} - 4 x^{17} + 19 x^{16} + 4 x^{15} + 11 x^{14} + 304 x^{13} + 325 x^{12} + 384 x^{11} + 3900 x^{10} + 1940 x^{9} - 3932 x^{8} + 3752 x^{7} + 30604 x^{6} + 13280 x^{5} + 18544 x^{4} + 10656 x^{3} + 10112 x^{2} + 512 x + 2752 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-977421656105717113803642241024=-\,2^{18}\cdot 37^{8}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{14} + \frac{3}{32} a^{13} - \frac{1}{16} a^{12} + \frac{3}{32} a^{11} + \frac{1}{16} a^{10} + \frac{5}{32} a^{9} + \frac{3}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{14} + \frac{1}{16} a^{13} + \frac{7}{64} a^{12} - \frac{1}{8} a^{11} + \frac{1}{64} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{3}{16} a^{6} - \frac{3}{8} a^{5} - \frac{1}{16} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{248144494079255698425858371153021504} a^{17} + \frac{213574159571030120042711708919597}{248144494079255698425858371153021504} a^{16} + \frac{2723162610041005059536377728017963}{248144494079255698425858371153021504} a^{15} + \frac{10430989453093047563727427361933623}{248144494079255698425858371153021504} a^{14} + \frac{13347187915230028817021033111188383}{248144494079255698425858371153021504} a^{13} - \frac{22411944401933090415190127955733901}{248144494079255698425858371153021504} a^{12} + \frac{22093866932121468548914413853380205}{248144494079255698425858371153021504} a^{11} - \frac{25656182138921435160512757512962627}{248144494079255698425858371153021504} a^{10} + \frac{6306945795117662813632778242381895}{62036123519813924606464592788255376} a^{9} - \frac{6160491882361606444333268260483753}{31018061759906962303232296394127688} a^{8} + \frac{3908084651244574834686064393102481}{62036123519813924606464592788255376} a^{7} - \frac{12115859807616491309538985617521847}{62036123519813924606464592788255376} a^{6} - \frac{29038355997831475651335678681257411}{62036123519813924606464592788255376} a^{5} + \frac{491119443658778811387620616222683}{62036123519813924606464592788255376} a^{4} - \frac{971194827944438475188262765322383}{15509030879953481151616148197063844} a^{3} + \frac{6008461695241481622326816272502521}{15509030879953481151616148197063844} a^{2} + \frac{696010903964338731547245770945543}{15509030879953481151616148197063844} a + \frac{2121476458685808630707705850899817}{7754515439976740575808074098531922}$
Class group and class number
$C_{2}\times C_{50}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866680.938443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for t18n623 are not computed |
| Character table for t18n623 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.404.1, 9.9.3340021539392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.10.6 | $x^{6} + 2 x^{5} + 4 x^{3} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $101$ | 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.12.6.1 | $x^{12} + 6181806 x^{6} - 10510100501 x^{2} + 9553681355409$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |