Normalized defining polynomial
\( x^{18} - 7 x^{17} + 66 x^{16} - 290 x^{15} + 1875 x^{14} - 7347 x^{13} + 41454 x^{12} - 152011 x^{11} + 715866 x^{10} - 2313995 x^{9} + 8987378 x^{8} - 24753343 x^{7} + 78686738 x^{6} - 175507995 x^{5} + 442941691 x^{4} - 728414092 x^{3} + 1370146814 x^{2} - 1302399605 x + 1581654073 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-975976429792931978524482994492749082624=-\,2^{12}\cdot 31^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{279449506180256538668925569751226646264274409927206696739} a^{17} + \frac{57411544981427054938221481830538720205217144754875206321}{279449506180256538668925569751226646264274409927206696739} a^{16} + \frac{119522064205989298397453474356137258473953845932150678427}{279449506180256538668925569751226646264274409927206696739} a^{15} + \frac{110193008665732349797090552140055894390442493554877539524}{279449506180256538668925569751226646264274409927206696739} a^{14} - \frac{12004954590634070877935344132322156815464948346633689988}{279449506180256538668925569751226646264274409927206696739} a^{13} + \frac{132226253257268353324891643988667727208619743924469689683}{279449506180256538668925569751226646264274409927206696739} a^{12} + \frac{106352121445121643015404689415354036845004986207639992914}{279449506180256538668925569751226646264274409927206696739} a^{11} - \frac{3106744784649257134000346146166943505588895617752256947}{279449506180256538668925569751226646264274409927206696739} a^{10} + \frac{35428009308668713024166933962185668996080277547861871694}{279449506180256538668925569751226646264274409927206696739} a^{9} + \frac{69418214748114913870176563262149102277909284581928345437}{279449506180256538668925569751226646264274409927206696739} a^{8} + \frac{132517552243604798814825515570695196159175317684839568527}{279449506180256538668925569751226646264274409927206696739} a^{7} + \frac{15712768226687115449001034295803599202508146526143932014}{279449506180256538668925569751226646264274409927206696739} a^{6} - \frac{53473670959406038844101043097990686931461524405015039752}{279449506180256538668925569751226646264274409927206696739} a^{5} + \frac{128473878640328044427966545819390358224702932087722923155}{279449506180256538668925569751226646264274409927206696739} a^{4} - \frac{54813717684989522927787825153885676809125599216462338913}{279449506180256538668925569751226646264274409927206696739} a^{3} + \frac{23874270636135696052145622979250369110143407576864078132}{279449506180256538668925569751226646264274409927206696739} a^{2} - \frac{88224752158771881403975617331225353794957959577575714735}{279449506180256538668925569751226646264274409927206696739} a + \frac{89869657206343803784962387645945895972890066711347192939}{279449506180256538668925569751226646264274409927206696739}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{8532}$, which has order $1228608$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.148.1, 3.3.1369.1, 6.0.652542064.2, 6.0.55833130351.2, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |