Normalized defining polynomial
\( x^{18} + 34 x^{16} + 442 x^{14} + 2878 x^{12} + 10264 x^{10} + 20724 x^{8} + 24144 x^{6} + 15974 x^{4} + 5529 x^{2} + 769 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-975771436849265818910759059456=-\,2^{18}\cdot 7^{12}\cdot 769^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{10} - \frac{2}{7} a^{8} + \frac{3}{7} a^{4} - \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{11} - \frac{2}{7} a^{9} + \frac{3}{7} a^{5} - \frac{1}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{49} a^{14} + \frac{3}{49} a^{12} + \frac{23}{49} a^{10} + \frac{11}{49} a^{8} + \frac{24}{49} a^{6} - \frac{3}{7} a^{4} + \frac{17}{49} a^{2} - \frac{2}{49}$, $\frac{1}{49} a^{15} + \frac{3}{49} a^{13} + \frac{23}{49} a^{11} + \frac{11}{49} a^{9} + \frac{24}{49} a^{7} - \frac{3}{7} a^{5} + \frac{17}{49} a^{3} - \frac{2}{49} a$, $\frac{1}{24353} a^{16} - \frac{69}{24353} a^{14} + \frac{591}{24353} a^{12} - \frac{830}{3479} a^{10} + \frac{10306}{24353} a^{8} + \frac{2906}{24353} a^{6} - \frac{3812}{24353} a^{4} - \frac{5391}{24353} a^{2} + \frac{4162}{24353}$, $\frac{1}{24353} a^{17} - \frac{69}{24353} a^{15} + \frac{591}{24353} a^{13} - \frac{830}{3479} a^{11} + \frac{10306}{24353} a^{9} + \frac{2906}{24353} a^{7} - \frac{3812}{24353} a^{5} - \frac{5391}{24353} a^{3} + \frac{4162}{24353} a$
Class group and class number
$C_{792}$, which has order $792$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60132.7264179 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 41472 |
| The 192 conjugacy class representatives for t18n696 are not computed |
| Character table for t18n696 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.69573030289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 769 | Data not computed | ||||||