Normalized defining polynomial
\( x^{18} + 234 x^{16} + 22815 x^{14} + 1199562 x^{12} + 36758007 x^{10} - 327640 x^{9} + 661644126 x^{8} - 38333880 x^{7} + 6689957274 x^{6} - 1495021320 x^{5} + 33884199180 x^{4} - 21594752400 x^{3} + 66074188401 x^{2} - 84219534360 x + 139161467719 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9748533507874859943721777394206605519=-\,3^{45}\cdot 53^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1431=3^{3}\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1431}(1,·)$, $\chi_{1431}(1430,·)$, $\chi_{1431}(953,·)$, $\chi_{1431}(1112,·)$, $\chi_{1431}(1114,·)$, $\chi_{1431}(476,·)$, $\chi_{1431}(794,·)$, $\chi_{1431}(158,·)$, $\chi_{1431}(160,·)$, $\chi_{1431}(635,·)$, $\chi_{1431}(796,·)$, $\chi_{1431}(637,·)$, $\chi_{1431}(478,·)$, $\chi_{1431}(1271,·)$, $\chi_{1431}(1273,·)$, $\chi_{1431}(955,·)$, $\chi_{1431}(317,·)$, $\chi_{1431}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{53158} a^{9} + \frac{117}{53158} a^{7} + \frac{4563}{53158} a^{5} + \frac{6376}{26579} a^{3} - \frac{8741}{53158} a + \frac{22233}{53158}$, $\frac{1}{53158} a^{10} + \frac{117}{53158} a^{8} + \frac{4563}{53158} a^{6} + \frac{6376}{26579} a^{4} - \frac{8741}{53158} a^{2} + \frac{22233}{53158} a$, $\frac{1}{53158} a^{11} - \frac{4563}{26579} a^{7} + \frac{10461}{53158} a^{5} - \frac{12301}{53158} a^{3} + \frac{22233}{53158} a^{2} + \frac{12695}{53158} a + \frac{3481}{53158}$, $\frac{1}{53158} a^{12} - \frac{4563}{26579} a^{8} + \frac{10461}{53158} a^{6} - \frac{12301}{53158} a^{4} + \frac{22233}{53158} a^{3} + \frac{12695}{53158} a^{2} + \frac{3481}{53158} a$, $\frac{1}{53158} a^{13} + \frac{2149}{7594} a^{7} + \frac{989}{7594} a^{5} + \frac{22233}{53158} a^{4} + \frac{24585}{53158} a^{3} + \frac{3481}{53158} a^{2} + \frac{9896}{26579} a - \frac{2864}{26579}$, $\frac{1}{6270117345666734} a^{14} + \frac{18604946345}{3135058672833367} a^{13} + \frac{13}{447865524690481} a^{12} + \frac{5284429863}{895731049380962} a^{11} + \frac{1859}{895731049380962} a^{10} + \frac{45366208205}{6270117345666734} a^{9} + \frac{32955}{447865524690481} a^{8} - \frac{3094954837314227}{6270117345666734} a^{7} + \frac{599781}{447865524690481} a^{6} + \frac{2476647931395601}{6270117345666734} a^{5} - \frac{446450022289377}{6270117345666734} a^{4} + \frac{69237905488091}{3135058672833367} a^{3} + \frac{409236209358644}{3135058672833367} a^{2} + \frac{2892311771861853}{6270117345666734} a + \frac{111195486500192}{447865524690481}$, $\frac{1}{6270117345666734} a^{15} + \frac{195}{6270117345666734} a^{13} - \frac{5959364539}{3135058672833367} a^{12} + \frac{7605}{3135058672833367} a^{11} + \frac{13958883700}{3135058672833367} a^{10} + \frac{604175}{6270117345666734} a^{9} + \frac{56018350175814}{3135058672833367} a^{8} + \frac{6426225}{3135058672833367} a^{7} + \frac{924393536037081}{6270117345666734} a^{6} + \frac{10024911}{447865524690481} a^{5} - \frac{18046504138569}{3135058672833367} a^{4} - \frac{2516751154723641}{6270117345666734} a^{3} - \frac{2105803435213209}{6270117345666734} a^{2} + \frac{16909396175469}{447865524690481} a - \frac{302311458152719}{3135058672833367}$, $\frac{1}{6270117345666734} a^{16} + \frac{22602636349}{3135058672833367} a^{13} - \frac{10140}{3135058672833367} a^{12} + \frac{4885805879}{3135058672833367} a^{11} - \frac{966680}{3135058672833367} a^{10} - \frac{9060299861}{3135058672833367} a^{9} - \frac{38557350}{3135058672833367} a^{8} - \frac{2838997172337857}{6270117345666734} a^{7} - \frac{106932384}{447865524690481} a^{6} - \frac{52958933544277}{895731049380962} a^{5} + \frac{185538268332729}{447865524690481} a^{4} + \frac{42855533734779}{3135058672833367} a^{3} + \frac{979550075888525}{6270117345666734} a^{2} + \frac{3040366693319835}{6270117345666734} a - \frac{200177575807996}{3135058672833367}$, $\frac{1}{6270117345666734} a^{17} - \frac{11492}{3135058672833367} a^{13} + \frac{19542404416}{3135058672833367} a^{12} - \frac{1195168}{3135058672833367} a^{11} - \frac{45371450445}{6270117345666734} a^{10} - \frac{53409070}{3135058672833367} a^{9} + \frac{563812652942380}{3135058672833367} a^{8} - \frac{1211900352}{3135058672833367} a^{7} + \frac{795349517950399}{3135058672833367} a^{6} - \frac{1969338072}{447865524690481} a^{5} - \frac{800591441401051}{3135058672833367} a^{4} - \frac{3100988997604189}{6270117345666734} a^{3} + \frac{860134040028082}{3135058672833367} a^{2} + \frac{1502166453397503}{6270117345666734} a + \frac{179609839098212}{3135058672833367}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8110}$, which has order $2076160$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-159}) \), \(\Q(\zeta_{9})^+\), 6.0.2930345991.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | R | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |