Normalized defining polynomial
\( x^{18} + 180 x^{16} + 13500 x^{14} + 546000 x^{12} + 12870000 x^{10} - 122791 x^{9} + 178200000 x^{8} - 11051190 x^{7} + 1386000000 x^{6} - 331535700 x^{5} + 5400000000 x^{4} - 3683730000 x^{3} + 8100000000 x^{2} - 11051190000 x + 18077629681 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-967188608675270393759591510313094923=-\,3^{45}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1107=3^{3}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1107}(1,·)$, $\chi_{1107}(1106,·)$, $\chi_{1107}(983,·)$, $\chi_{1107}(985,·)$, $\chi_{1107}(860,·)$, $\chi_{1107}(862,·)$, $\chi_{1107}(737,·)$, $\chi_{1107}(739,·)$, $\chi_{1107}(614,·)$, $\chi_{1107}(616,·)$, $\chi_{1107}(491,·)$, $\chi_{1107}(493,·)$, $\chi_{1107}(368,·)$, $\chi_{1107}(370,·)$, $\chi_{1107}(245,·)$, $\chi_{1107}(247,·)$, $\chi_{1107}(122,·)$, $\chi_{1107}(124,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{21571} a^{9} + \frac{90}{21571} a^{7} + \frac{2700}{21571} a^{5} + \frac{8429}{21571} a^{3} + \frac{3716}{21571} a - \frac{7468}{21571}$, $\frac{1}{21571} a^{10} + \frac{90}{21571} a^{8} + \frac{2700}{21571} a^{6} + \frac{8429}{21571} a^{4} + \frac{3716}{21571} a^{2} - \frac{7468}{21571} a$, $\frac{1}{21571} a^{11} - \frac{5400}{21571} a^{7} + \frac{2710}{21571} a^{5} + \frac{91}{21571} a^{3} - \frac{7468}{21571} a^{2} + \frac{10696}{21571} a + \frac{3419}{21571}$, $\frac{1}{21571} a^{12} - \frac{5400}{21571} a^{8} + \frac{2710}{21571} a^{6} + \frac{91}{21571} a^{4} - \frac{7468}{21571} a^{3} + \frac{10696}{21571} a^{2} + \frac{3419}{21571} a$, $\frac{1}{21571} a^{13} - \frac{7423}{21571} a^{7} - \frac{1905}{21571} a^{5} - \frac{7468}{21571} a^{4} - \frac{9085}{21571} a^{3} + \frac{3419}{21571} a^{2} + \frac{5370}{21571} a + \frac{10570}{21571}$, $\frac{1}{346810549848851} a^{14} + \frac{3715540207}{346810549848851} a^{13} + \frac{140}{346810549848851} a^{12} + \frac{691336480}{346810549848851} a^{11} + \frac{700}{31528231804441} a^{10} + \frac{2411564638}{346810549848851} a^{9} + \frac{210000}{346810549848851} a^{8} - \frac{29605349210133}{346810549848851} a^{7} + \frac{2940000}{346810549848851} a^{6} + \frac{157769757711691}{346810549848851} a^{5} - \frac{60451868000560}{346810549848851} a^{4} - \frac{55709098584475}{346810549848851} a^{3} + \frac{143525049162287}{346810549848851} a^{2} - \frac{158236190948702}{346810549848851} a + \frac{133219259536766}{346810549848851}$, $\frac{1}{346810549848851} a^{15} + \frac{150}{346810549848851} a^{13} - \frac{454558428}{31528231804441} a^{12} + \frac{9000}{346810549848851} a^{11} - \frac{5144826763}{346810549848851} a^{10} + \frac{25000}{31528231804441} a^{9} + \frac{26537736214530}{346810549848851} a^{8} + \frac{4500000}{346810549848851} a^{7} - \frac{120855528559485}{346810549848851} a^{6} + \frac{37800000}{346810549848851} a^{5} + \frac{146885353696166}{346810549848851} a^{4} + \frac{17572989241333}{346810549848851} a^{3} + \frac{10386590821526}{346810549848851} a^{2} - \frac{100404647357845}{346810549848851} a + \frac{102720221613909}{346810549848851}$, $\frac{1}{346810549848851} a^{16} + \frac{385865077}{346810549848851} a^{13} - \frac{12000}{346810549848851} a^{12} + \frac{99948892}{9373258104023} a^{11} - \frac{80000}{31528231804441} a^{10} + \frac{1620398162}{346810549848851} a^{9} - \frac{27000000}{346810549848851} a^{8} - \frac{46046030322852}{346810549848851} a^{7} - \frac{403200000}{346810549848851} a^{6} + \frac{69700005791985}{346810549848851} a^{5} + \frac{27634645421639}{346810549848851} a^{4} + \frac{2461211348719}{9373258104023} a^{3} - \frac{83884194045777}{346810549848851} a^{2} + \frac{161813377306903}{346810549848851} a + \frac{91366169477123}{346810549848851}$, $\frac{1}{346810549848851} a^{17} - \frac{13600}{346810549848851} a^{13} - \frac{2090112733}{346810549848851} a^{12} - \frac{1088000}{346810549848851} a^{11} + \frac{4820796247}{346810549848851} a^{10} - \frac{3400000}{31528231804441} a^{9} - \frac{119842763136402}{346810549848851} a^{8} - \frac{652800000}{346810549848851} a^{7} + \frac{160532837400995}{346810549848851} a^{6} - \frac{5712000000}{346810549848851} a^{5} - \frac{5288553708607}{31528231804441} a^{4} - \frac{91921491256596}{346810549848851} a^{3} + \frac{96538398436129}{346810549848851} a^{2} - \frac{4864915813517}{31528231804441} a - \frac{135139615329443}{346810549848851}$
Class group and class number
$C_{19}\times C_{42446}$, which has order $806474$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), \(\Q(\zeta_{9})^+\), 6.0.1356572043.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 41 | Data not computed | ||||||