Normalized defining polynomial
\( x^{18} - x^{17} - 282 x^{16} + 42 x^{15} + 30077 x^{14} + 18035 x^{13} - 1363905 x^{12} - 1533003 x^{11} + 25199154 x^{10} + 38273266 x^{9} - 19380689 x^{8} + 151200629 x^{7} + 2370420196 x^{6} + 1825666152 x^{5} + 11737837080 x^{4} + 16619785184 x^{3} + 87416317952 x^{2} - 2937968128 x + 305535379456 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-957725673320066238974132504381157911244615234375=-\,3^{9}\cdot 5^{9}\cdot 7^{14}\cdot 67^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $463.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{5}{32} a^{6} - \frac{1}{8} a^{5} - \frac{7}{32} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{5}{32} a^{7} - \frac{1}{8} a^{6} - \frac{7}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{11136} a^{14} + \frac{49}{11136} a^{13} - \frac{169}{11136} a^{12} - \frac{143}{3712} a^{11} + \frac{23}{464} a^{10} - \frac{223}{2784} a^{9} - \frac{445}{11136} a^{8} + \frac{1879}{11136} a^{7} - \frac{801}{3712} a^{6} + \frac{51}{3712} a^{5} - \frac{271}{1392} a^{4} - \frac{117}{464} a^{3} - \frac{229}{1392} a^{2} + \frac{37}{174} a - \frac{40}{87}$, $\frac{1}{33408} a^{15} - \frac{1}{33408} a^{14} - \frac{61}{11136} a^{13} + \frac{365}{33408} a^{12} - \frac{73}{1856} a^{11} - \frac{337}{8352} a^{10} + \frac{1003}{33408} a^{9} + \frac{619}{11136} a^{8} - \frac{8309}{33408} a^{7} - \frac{499}{11136} a^{6} - \frac{1603}{16704} a^{5} + \frac{73}{522} a^{4} + \frac{269}{4176} a^{3} + \frac{131}{2088} a^{2} - \frac{95}{261} a + \frac{86}{261}$, $\frac{1}{143534398464} a^{16} + \frac{10705}{23922399744} a^{15} - \frac{1426717}{35883599616} a^{14} + \frac{214419667}{71767199232} a^{13} + \frac{1788537719}{143534398464} a^{12} + \frac{923009495}{35883599616} a^{11} - \frac{23559515}{5316088832} a^{10} + \frac{849562091}{71767199232} a^{9} - \frac{986612951}{8970899904} a^{8} + \frac{8691040997}{71767199232} a^{7} - \frac{14594829611}{143534398464} a^{6} + \frac{188487523}{4485449952} a^{5} - \frac{1085020333}{8970899904} a^{4} - \frac{1933869359}{5980599936} a^{3} + \frac{17593523}{1121362488} a^{2} - \frac{2382275}{62297916} a + \frac{140041517}{280340622}$, $\frac{1}{42129213793097018941068431702860037843442193177497109378191910287017812992} a^{17} + \frac{113670672939281589449806492358963535728924329218649335491243723}{42129213793097018941068431702860037843442193177497109378191910287017812992} a^{16} - \frac{92548055995246531942818623958522388074620232481203967162039568613263}{21064606896548509470534215851430018921721096588748554689095955143508906496} a^{15} - \frac{274507024077050188365369807305201114202352725222943022750077563106297}{7021535632182836490178071950476672973907032196249518229698651714502968832} a^{14} + \frac{218872809051593157614506993840049571497583123187099352385122999086195855}{14043071264365672980356143900953345947814064392499036459397303429005937664} a^{13} + \frac{1404709211716458129287682341995669582407201354062694894055062732163567}{4681023754788557660118714633651115315938021464166345486465767809668645888} a^{12} + \frac{2530374340416768884469968959251004676461767611489335396320864646356750115}{42129213793097018941068431702860037843442193177497109378191910287017812992} a^{11} - \frac{687049439400392336282713818972767625491419552999241390166327519014801447}{42129213793097018941068431702860037843442193177497109378191910287017812992} a^{10} + \frac{353647735161624194646108566940173173457269405036374415083572817762850753}{7021535632182836490178071950476672973907032196249518229698651714502968832} a^{9} + \frac{710404506535063690104550560987264419063619942810650816574798680177852963}{7021535632182836490178071950476672973907032196249518229698651714502968832} a^{8} + \frac{3372038710829757485229784479431325352991762321701255360178737412499878117}{14043071264365672980356143900953345947814064392499036459397303429005937664} a^{7} + \frac{1124805933686944276944432971566067162553015268500937026312119151542180017}{42129213793097018941068431702860037843442193177497109378191910287017812992} a^{6} - \frac{978452755898914871963970830130490667342264775353228691603879268499881}{5044206632315256099265856286261977711140109336386148153519146346625696} a^{5} + \frac{284271926499362509664250638659603824348983331122908840270862324205612521}{5266151724137127367633553962857504730430274147187138672273988785877226624} a^{4} - \frac{2594206978509798675357468233123635236503310414033838399491250000170393385}{5266151724137127367633553962857504730430274147187138672273988785877226624} a^{3} - \frac{14004540862272847739206912388706132447308454040806040358984938935820876}{41141810344821307559637140334824255706486516774899520877140537389665833} a^{2} + \frac{23297556703431104477175246223607973095258227757477496896462561652823291}{164567241379285230238548561339297022825946067099598083508562149558663332} a - \frac{10171225882464558636568629985688444032145231990303811843582850629154703}{82283620689642615119274280669648511412973033549799041754281074779331666}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{77184492}$, which has order $2469903744$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4641319478.753615 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.219961.2, 3.3.469.1, 6.0.742368375.2, 6.0.163292090133375.1, 9.9.4991256617582519389.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $67$ | 67.6.4.2 | $x^{6} - 67 x^{3} + 53868$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 67.12.10.3 | $x^{12} - 16147 x^{6} + 93083904$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |