Normalized defining polynomial
\( x^{18} + 318 x^{16} - x^{15} + 39447 x^{14} - 321 x^{13} + 2500302 x^{12} - 133146 x^{11} + 89391399 x^{10} - 15798444 x^{9} + 1882862586 x^{8} - 809469819 x^{7} + 23827510937 x^{6} - 18496427643 x^{5} + 185880800082 x^{4} - 182182097162 x^{3} + 930282815520 x^{2} - 609765780432 x + 2780371629001 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-957193458914897226781087429876810532211=-\,3^{27}\cdot 7^{15}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1953=3^{2}\cdot 7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1953}(1024,·)$, $\chi_{1953}(1,·)$, $\chi_{1953}(836,·)$, $\chi_{1953}(650,·)$, $\chi_{1953}(1675,·)$, $\chi_{1953}(652,·)$, $\chi_{1953}(1487,·)$, $\chi_{1953}(466,·)$, $\chi_{1953}(1301,·)$, $\chi_{1953}(278,·)$, $\chi_{1953}(1303,·)$, $\chi_{1953}(1117,·)$, $\chi_{1953}(1952,·)$, $\chi_{1953}(929,·)$, $\chi_{1953}(1768,·)$, $\chi_{1953}(1580,·)$, $\chi_{1953}(373,·)$, $\chi_{1953}(185,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4927} a^{15} + \frac{1739}{4927} a^{13} - \frac{1829}{4927} a^{12} - \frac{2204}{4927} a^{11} + \frac{1149}{4927} a^{10} + \frac{1980}{4927} a^{9} + \frac{401}{4927} a^{8} - \frac{369}{4927} a^{7} - \frac{176}{379} a^{6} - \frac{1310}{4927} a^{5} + \frac{1897}{4927} a^{4} + \frac{2231}{4927} a^{3} - \frac{852}{4927} a^{2} + \frac{2266}{4927} a - \frac{2380}{4927}$, $\frac{1}{1156338273169235} a^{16} - \frac{1738744548}{1156338273169235} a^{15} - \frac{255024579118364}{1156338273169235} a^{14} + \frac{70022205343209}{1156338273169235} a^{13} - \frac{39569100359832}{88949097936095} a^{12} - \frac{575216761372062}{1156338273169235} a^{11} - \frac{117763819244471}{1156338273169235} a^{10} + \frac{565746459549614}{1156338273169235} a^{9} + \frac{181293719512683}{1156338273169235} a^{8} - \frac{82332169058957}{1156338273169235} a^{7} - \frac{295244575330481}{1156338273169235} a^{6} - \frac{378404602194904}{1156338273169235} a^{5} + \frac{73923338032711}{231267654633847} a^{4} - \frac{147274860848654}{1156338273169235} a^{3} - \frac{449134314082706}{1156338273169235} a^{2} + \frac{71355509157656}{231267654633847} a + \frac{398540573189091}{1156338273169235}$, $\frac{1}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{17} - \frac{564248812947546375072813433570414116655970433098947117731177844}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{16} - \frac{2220673773755322964940979101356382553487487484839518210858010688965936894396}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{15} - \frac{1622280383704850006589511433790525094554815228242822735256689664299179890825452}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{14} - \frac{392968416929745415864803186155441482764029554950391818928415182383650561984818}{5886919471918362863853895726833967253866100136580729824047139060451331756486905} a^{13} - \frac{9375664979210257178993594825357115305061408181597969365112247085233707724682136}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{12} + \frac{9391903328932641301307255161024357529471226761291966085609776683551185029759686}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{11} - \frac{2828371488937960937455013954787012660350211462603063346073609075725932560773191}{5886919471918362863853895726833967253866100136580729824047139060451331756486905} a^{10} - \frac{11868441770586454916754956806857222698076559993710266376584003887698844954188306}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{9} + \frac{1568272259423547758112164006981600678772232776220574074282404029440532149458594}{5886919471918362863853895726833967253866100136580729824047139060451331756486905} a^{8} - \frac{13893495279862530725792894078434596480207563280460409198010939821948203724057394}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{7} - \frac{739353368001042943755129749715136558724050826172287336130795040198270836621058}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{6} + \frac{822543346549628137966450853656012375877423407176839470107785034960421691621203}{2264199796891678024559190664166910482256192360223357624633515023250512214033425} a^{5} - \frac{5134953738861801444845164629266963189052781704326014767633219330989242120379934}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{4} + \frac{291549778621533092496589521672259093969387366632855255141663108477608631255281}{2264199796891678024559190664166910482256192360223357624633515023250512214033425} a^{3} - \frac{6090375338020121964951700356163629980569054376716235917217413762058533036052069}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a^{2} - \frac{12272802796409795687368567044662749694472795249041046406929497206073627511673819}{29434597359591814319269478634169836269330500682903649120235695302256658782434525} a - \frac{74693187898424206532317521107613134066424978648933810993078767415997416958567}{2264199796891678024559190664166910482256192360223357624633515023250512214033425}$
Class group and class number
$C_{2}\times C_{4}\times C_{76}\times C_{16492}$, which has order $10027136$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-651}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.201127054779.4, 6.0.9855225684171.7, 6.0.13518828099.1, 6.0.9855225684171.8, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $31$ | 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |