Normalized defining polynomial
\( x^{18} - 2 x^{17} + 5 x^{16} - 8 x^{15} + 14 x^{14} - 30 x^{13} + 44 x^{12} - 77 x^{11} + 106 x^{10} - 211 x^{9} + 270 x^{8} - 400 x^{7} + 344 x^{6} - 304 x^{5} + 544 x^{4} - 64 x^{3} + 768 x^{2} + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9543175480174580217820007=-\,7^{12}\cdot 23^{6}\cdot 167^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{48} a^{13} + \frac{5}{48} a^{11} + \frac{1}{24} a^{10} - \frac{1}{8} a^{9} - \frac{5}{24} a^{8} - \frac{1}{2} a^{7} - \frac{13}{48} a^{6} - \frac{19}{48} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{96} a^{14} + \frac{5}{96} a^{12} + \frac{1}{48} a^{11} - \frac{1}{16} a^{10} + \frac{7}{48} a^{9} - \frac{1}{4} a^{8} + \frac{35}{96} a^{7} - \frac{19}{96} a^{5} + \frac{1}{12} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{384} a^{15} - \frac{1}{192} a^{14} + \frac{1}{384} a^{13} - \frac{1}{48} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{7}{96} a^{9} - \frac{23}{128} a^{8} + \frac{37}{192} a^{7} - \frac{53}{128} a^{6} + \frac{71}{192} a^{5} + \frac{5}{32} a^{4} - \frac{13}{48} a^{3} + \frac{5}{24} a^{2} - \frac{5}{12} a + \frac{1}{6}$, $\frac{1}{612096} a^{16} - \frac{47}{38256} a^{15} + \frac{181}{612096} a^{14} + \frac{423}{102016} a^{13} + \frac{6155}{102016} a^{12} + \frac{31535}{306048} a^{11} - \frac{1549}{25504} a^{10} - \frac{44559}{204032} a^{9} - \frac{1751}{12752} a^{8} + \frac{60447}{204032} a^{7} - \frac{799}{2391} a^{6} - \frac{4373}{12752} a^{5} + \frac{587}{38256} a^{4} - \frac{1799}{6376} a^{3} - \frac{715}{9564} a^{2} + \frac{575}{4782} a - \frac{2257}{4782}$, $\frac{1}{921816576} a^{17} + \frac{35}{230454144} a^{16} - \frac{275291}{921816576} a^{15} - \frac{2181485}{460908288} a^{14} + \frac{4395797}{460908288} a^{13} + \frac{2366723}{460908288} a^{12} - \frac{1048103}{19204512} a^{11} + \frac{21436915}{921816576} a^{10} - \frac{55660159}{230454144} a^{9} - \frac{126600851}{921816576} a^{8} + \frac{59920783}{230454144} a^{7} + \frac{4701865}{9602256} a^{6} - \frac{4903345}{14403384} a^{5} - \frac{392779}{7201692} a^{4} + \frac{2235565}{7201692} a^{3} + \frac{2448869}{7201692} a^{2} - \frac{2242195}{7201692} a + \frac{699362}{1800423}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 204453.252453 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\times A_4$ (as 18T60):
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $C_2\times S_3\times A_4$ |
| Character table for $C_2\times S_3\times A_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.1.23.1, 6.0.400967.1, 9.3.1431435383.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.1.1 | $x^{2} - 167$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 167.2.1.1 | $x^{2} - 167$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.1.1 | $x^{2} - 167$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |