Normalized defining polynomial
\( x^{18} - 6 x^{17} + 10 x^{16} - 3 x^{15} + 50 x^{14} - 205 x^{13} + 35 x^{12} + 640 x^{11} + 374 x^{10} - 3154 x^{9} - 24 x^{8} + 2441 x^{7} + 22483 x^{6} - 53973 x^{5} + 47343 x^{4} - 44847 x^{3} + 80910 x^{2} - 81685 x + 29791 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-95381235556895403072752429375=-\,5^{4}\cdot 13^{16}\cdot 47^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{155} a^{16} + \frac{5}{31} a^{15} - \frac{52}{155} a^{14} - \frac{13}{31} a^{13} + \frac{19}{155} a^{12} + \frac{74}{155} a^{11} + \frac{66}{155} a^{10} - \frac{42}{155} a^{9} - \frac{12}{31} a^{8} + \frac{14}{31} a^{7} - \frac{24}{155} a^{6} - \frac{8}{155} a^{5} + \frac{8}{155} a^{4} - \frac{64}{155} a^{3} + \frac{68}{155} a^{2} - \frac{21}{155} a - \frac{2}{5}$, $\frac{1}{5649758809070739702497866744294855} a^{17} - \frac{2980831955293838039886078620118}{1129951761814147940499573348858971} a^{16} - \frac{401588605306315605954935859633887}{5649758809070739702497866744294855} a^{15} - \frac{388146469347937205304589836261455}{1129951761814147940499573348858971} a^{14} + \frac{1867091603181936637586672972599369}{5649758809070739702497866744294855} a^{13} + \frac{798385705415305815366624150311964}{5649758809070739702497866744294855} a^{12} + \frac{2293030330804717354090619859952231}{5649758809070739702497866744294855} a^{11} - \frac{428323077615633071165447771743537}{5649758809070739702497866744294855} a^{10} - \frac{239967571598275024398381468765814}{1129951761814147940499573348858971} a^{9} + \frac{241692239032469891273737707345680}{1129951761814147940499573348858971} a^{8} + \frac{1920216178354760737102646097767931}{5649758809070739702497866744294855} a^{7} - \frac{1461843332954383901430146770726238}{5649758809070739702497866744294855} a^{6} + \frac{1415516089841134538056742357975653}{5649758809070739702497866744294855} a^{5} + \frac{2116020118359456108242051163881386}{5649758809070739702497866744294855} a^{4} - \frac{2802080107184462919537300405405507}{5649758809070739702497866744294855} a^{3} + \frac{2480887191515175810704694296510559}{5649758809070739702497866744294855} a^{2} - \frac{34988914587340049548899446210767}{182250284163572248467673120783705} a - \frac{335505339025861681125576135024}{1175808284926272570759181424411}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1993729.37848 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 26 conjugacy class representatives for t18n199 |
| Character table for t18n199 is not computed |
Intermediate fields
| 3.3.169.1, 6.0.1342367.1, 9.9.45048729067225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | $18$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | $18$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 13 | Data not computed | ||||||
| 47 | Data not computed | ||||||