Normalized defining polynomial
\( x^{18} - 9 x^{17} + 63 x^{16} - 288 x^{15} + 1116 x^{14} - 3492 x^{13} + 9780 x^{12} - 24174 x^{11} + 53955 x^{10} - 108675 x^{9} + 196839 x^{8} - 310590 x^{7} + 436710 x^{6} - 700686 x^{5} + 1053576 x^{4} - 898146 x^{3} + 399015 x^{2} - 211203 x + 106415 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9511068774268243823056556964950016=-\,2^{12}\cdot 3^{44}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} + \frac{1}{6} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} + \frac{1}{6} a^{9} - \frac{1}{4} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} + \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{13} + \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{1}{6} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{24} a^{6} - \frac{1}{6} a^{5} - \frac{11}{24} a^{4} - \frac{7}{24} a^{3} + \frac{1}{12} a^{2} - \frac{11}{24} a + \frac{1}{24}$, $\frac{1}{24} a^{15} - \frac{1}{24} a^{13} - \frac{1}{24} a^{12} + \frac{1}{24} a^{10} + \frac{1}{24} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{12} a^{4} + \frac{7}{24} a^{3} + \frac{5}{24} a^{2} + \frac{1}{12} a - \frac{5}{24}$, $\frac{1}{48} a^{16} - \frac{1}{12} a^{10} - \frac{1}{8} a^{9} - \frac{11}{48} a^{8} - \frac{1}{4} a^{7} + \frac{1}{12} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{12} a^{2} - \frac{1}{8} a + \frac{5}{48}$, $\frac{1}{341233907673233872165503177616122320784} a^{17} + \frac{2964426628379334290772490957116944513}{341233907673233872165503177616122320784} a^{16} - \frac{3387847786463347537364127350597147}{7109039743192372336781316200335881683} a^{15} - \frac{993048173804259336300145838176701529}{85308476918308468041375794404030580196} a^{14} + \frac{264680296946565814723960014077569141}{7109039743192372336781316200335881683} a^{13} + \frac{823436479976121976814306935268914396}{21327119229577117010343948601007645049} a^{12} - \frac{3395815684471835301463894371129134449}{85308476918308468041375794404030580196} a^{11} + \frac{1642854423959889841730346916880933917}{170616953836616936082751588808061160392} a^{10} + \frac{46575447657686180871182701923003139279}{341233907673233872165503177616122320784} a^{9} + \frac{34485208673149419146903736257687339741}{341233907673233872165503177616122320784} a^{8} - \frac{3169882239504666926560010315314197191}{21327119229577117010343948601007645049} a^{7} - \frac{38050286804573263911001160846794484905}{170616953836616936082751588808061160392} a^{6} - \frac{26396432251412428766087029464152149497}{56872317945538978694250529602687053464} a^{5} - \frac{28583717535162266960120538367959293317}{85308476918308468041375794404030580196} a^{4} - \frac{5156140337245859301812390639567537537}{42654238459154234020687897202015290098} a^{3} + \frac{58025930040366139613188528015462923499}{170616953836616936082751588808061160392} a^{2} + \frac{58934975393031513328580274146169859631}{341233907673233872165503177616122320784} a - \frac{57048376989748661492788602574221746015}{341233907673233872165503177616122320784}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7037853377.607728 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.243.1, 6.0.78594219.2, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.22.46 | $x^{9} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_3^2 : C_6$ | $[2, 5/2, 17/6]_{2}$ |
| 3.9.22.46 | $x^{9} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_3^2 : C_6$ | $[2, 5/2, 17/6]_{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |