Normalized defining polynomial
\( x^{18} - 6 x^{17} + 81 x^{16} - 370 x^{15} + 2577 x^{14} - 9226 x^{13} + 39726 x^{12} - 107954 x^{11} + 304596 x^{10} - 615760 x^{9} + 1620055 x^{8} - 2975076 x^{7} + 6181459 x^{6} - 8245054 x^{5} + 15664617 x^{4} - 17759238 x^{3} + 36433958 x^{2} - 26053208 x + 31314401 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-95090394182193546591849307801911296=-\,2^{27}\cdot 7^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(387,·)$, $\chi_{728}(179,·)$, $\chi_{728}(81,·)$, $\chi_{728}(417,·)$, $\chi_{728}(9,·)$, $\chi_{728}(459,·)$, $\chi_{728}(529,·)$, $\chi_{728}(667,·)$, $\chi_{728}(491,·)$, $\chi_{728}(289,·)$, $\chi_{728}(155,·)$, $\chi_{728}(113,·)$, $\chi_{728}(43,·)$, $\chi_{728}(625,·)$, $\chi_{728}(51,·)$, $\chi_{728}(393,·)$, $\chi_{728}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{5} a^{11} - \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{20} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{7}{20}$, $\frac{1}{60} a^{13} + \frac{1}{5} a^{11} - \frac{1}{15} a^{10} - \frac{13}{60} a^{9} - \frac{1}{5} a^{7} - \frac{1}{15} a^{6} - \frac{1}{2} a^{5} + \frac{4}{15} a^{4} + \frac{7}{15} a^{3} - \frac{2}{15} a^{2} - \frac{3}{20} a + \frac{7}{15}$, $\frac{1}{60} a^{14} + \frac{7}{30} a^{11} + \frac{11}{60} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} + \frac{7}{30} a^{7} + \frac{1}{5} a^{6} - \frac{7}{30} a^{5} + \frac{7}{15} a^{4} + \frac{1}{6} a^{3} - \frac{9}{20} a^{2} + \frac{4}{15} a - \frac{2}{5}$, $\frac{1}{60} a^{15} - \frac{1}{60} a^{12} + \frac{11}{60} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{9} - \frac{1}{60} a^{8} + \frac{1}{5} a^{7} - \frac{7}{30} a^{6} + \frac{7}{15} a^{5} + \frac{1}{6} a^{4} - \frac{9}{20} a^{3} - \frac{7}{30} a^{2} - \frac{2}{5} a - \frac{1}{4}$, $\frac{1}{13412170194518632687860} a^{16} + \frac{1622522407082285901}{894144679634575512524} a^{15} - \frac{1481222776129341159}{4470723398172877562620} a^{14} - \frac{16902844557740936039}{4470723398172877562620} a^{13} - \frac{243482409923327111809}{13412170194518632687860} a^{12} + \frac{842853083777601030079}{4470723398172877562620} a^{11} - \frac{2084593197549765584137}{13412170194518632687860} a^{10} + \frac{3293605658631588970033}{13412170194518632687860} a^{9} + \frac{16280653869503631059}{223536169908643878131} a^{8} - \frac{62449671870975360577}{670608509725931634393} a^{7} + \frac{85802057258947110184}{1117680849543219390655} a^{6} + \frac{540344966915077193632}{3353042548629658171965} a^{5} + \frac{5924774226553872184831}{13412170194518632687860} a^{4} + \frac{5527754967976096363373}{13412170194518632687860} a^{3} + \frac{140188917571211584513}{13412170194518632687860} a^{2} + \frac{381885013509356842329}{4470723398172877562620} a + \frac{630795528410924925211}{1341217019451863268786}$, $\frac{1}{159134341970510288869196250067915260} a^{17} - \frac{2752476294547}{159134341970510288869196250067915260} a^{16} + \frac{134167337336997052458639745120861}{159134341970510288869196250067915260} a^{15} + \frac{194265871761964694187711558356009}{31826868394102057773839250013583052} a^{14} - \frac{74717869214186618181881561678429}{31826868394102057773839250013583052} a^{13} - \frac{221320389706745801004139949950262}{13261195164209190739099687505659605} a^{12} + \frac{9345426746242354113541035404632561}{53044780656836762956398750022638420} a^{11} + \frac{20929044351130996746405726437607193}{159134341970510288869196250067915260} a^{10} - \frac{17271095899609683468835232627690723}{79567170985255144434598125033957630} a^{9} - \frac{7551259816270419042749590700389097}{53044780656836762956398750022638420} a^{8} - \frac{1135444163070514424078894767226962}{7956717098525514443459812503395763} a^{7} + \frac{18828007329556555138633267203676741}{79567170985255144434598125033957630} a^{6} + \frac{73220380252436827057315870662415637}{159134341970510288869196250067915260} a^{5} - \frac{1651409381258034267624479024625219}{3536318710455784197093250001509228} a^{4} - \frac{539805455634737652834814707458453}{3536318710455784197093250001509228} a^{3} - \frac{5481339919757467033212780790893179}{17681593552278920985466250007546140} a^{2} + \frac{13149543370195872021309922871761993}{79567170985255144434598125033957630} a - \frac{2834700531415879685882072448576259}{159134341970510288869196250067915260}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{378}$, which has order $54432$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-26}) \), 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.1, 3.3.8281.2, 6.0.190102016.1, 6.0.2700798464.1, 6.0.456434940416.3, 6.0.456434940416.5, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |