Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 102 x^{15} + 159 x^{14} - 93 x^{13} - 166 x^{12} + 435 x^{11} - 361 x^{10} - 134 x^{9} + 621 x^{8} - 657 x^{7} + 349 x^{6} - 48 x^{5} - 94 x^{4} + 76 x^{3} - 8 x^{2} - 8 x + 4 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-95006081547000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{296} a^{16} - \frac{1}{296} a^{15} - \frac{11}{148} a^{14} - \frac{3}{296} a^{13} - \frac{31}{296} a^{12} - \frac{17}{148} a^{11} - \frac{53}{296} a^{10} - \frac{3}{8} a^{9} - \frac{17}{74} a^{8} - \frac{49}{296} a^{7} - \frac{15}{296} a^{6} - \frac{13}{37} a^{5} + \frac{45}{148} a^{4} - \frac{4}{37} a^{3} + \frac{15}{74} a^{2} + \frac{4}{37} a + \frac{7}{74}$, $\frac{1}{102131025112} a^{17} - \frac{83042435}{102131025112} a^{16} - \frac{3757565349}{51065512556} a^{15} + \frac{4757742025}{102131025112} a^{14} + \frac{17861013903}{102131025112} a^{13} - \frac{11490140239}{51065512556} a^{12} - \frac{44676973185}{102131025112} a^{11} + \frac{31774736891}{102131025112} a^{10} + \frac{4255053929}{25532756278} a^{9} - \frac{28138730213}{102131025112} a^{8} + \frac{49366124123}{102131025112} a^{7} + \frac{2464698810}{12766378139} a^{6} - \frac{25279575385}{51065512556} a^{5} - \frac{5838248783}{25532756278} a^{4} + \frac{2285701243}{25532756278} a^{3} - \frac{5425746626}{12766378139} a^{2} + \frac{4635219819}{25532756278} a + \frac{5518452639}{12766378139}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4841767}{74602648} a^{17} - \frac{49597587}{74602648} a^{16} + \frac{118021939}{37301324} a^{15} - \frac{671335471}{74602648} a^{14} + \frac{1161001067}{74602648} a^{13} - \frac{450989303}{37301324} a^{12} - \frac{842287253}{74602648} a^{11} + \frac{3038726651}{74602648} a^{10} - \frac{746496559}{18650662} a^{9} - \frac{385384229}{74602648} a^{8} + \frac{4236984607}{74602648} a^{7} - \frac{606105452}{9325331} a^{6} + \frac{344608323}{9325331} a^{5} - \frac{207737191}{18650662} a^{4} - \frac{58503867}{18650662} a^{3} + \frac{101555603}{18650662} a^{2} + \frac{1178433}{18650662} a + \frac{2014680}{9325331} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54339.93481731778 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 3.3.1300.1, 6.0.45630000.1, 6.0.270000.1, 9.3.59319000000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |