Normalized defining polynomial
\( x^{18} + 42 x^{16} + 693 x^{14} + 5880 x^{12} + 28224 x^{10} + 79380 x^{8} + 130536 x^{6} + 120393 x^{4} + 55566 x^{2} + 9261 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9490397425838961457555240648704=-\,2^{18}\cdot 3^{27}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(252=2^{2}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{252}(1,·)$, $\chi_{252}(131,·)$, $\chi_{252}(193,·)$, $\chi_{252}(205,·)$, $\chi_{252}(143,·)$, $\chi_{252}(83,·)$, $\chi_{252}(85,·)$, $\chi_{252}(215,·)$, $\chi_{252}(25,·)$, $\chi_{252}(227,·)$, $\chi_{252}(37,·)$, $\chi_{252}(167,·)$, $\chi_{252}(169,·)$, $\chi_{252}(109,·)$, $\chi_{252}(47,·)$, $\chi_{252}(251,·)$, $\chi_{252}(121,·)$, $\chi_{252}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{21} a^{6}$, $\frac{1}{21} a^{7}$, $\frac{1}{21} a^{8}$, $\frac{1}{21} a^{9}$, $\frac{1}{21} a^{10}$, $\frac{1}{21} a^{11}$, $\frac{1}{441} a^{12}$, $\frac{1}{441} a^{13}$, $\frac{1}{1764} a^{14} + \frac{1}{4}$, $\frac{1}{1764} a^{15} + \frac{1}{4} a$, $\frac{1}{7056} a^{16} + \frac{1}{7056} a^{14} - \frac{1}{1764} a^{12} - \frac{1}{84} a^{10} + \frac{1}{84} a^{8} - \frac{1}{2} a^{4} - \frac{7}{16} a^{2} - \frac{3}{16}$, $\frac{1}{7056} a^{17} + \frac{1}{7056} a^{15} - \frac{1}{1764} a^{13} - \frac{1}{84} a^{11} + \frac{1}{84} a^{9} - \frac{1}{2} a^{5} - \frac{7}{16} a^{3} - \frac{3}{16} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{182}$, which has order $1456$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.0.432081216.1, 6.0.29042496.1, 6.0.21171979584.2, 6.0.21171979584.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||