Normalized defining polynomial
\( x^{18} + 6 x^{16} + 24 x^{14} - 156 x^{13} + 181 x^{12} - 168 x^{11} - 12 x^{10} + 864 x^{9} + 1956 x^{8} - 1968 x^{7} - 773 x^{6} + 384 x^{5} + 810 x^{4} + 14112 x^{3} + 32844 x^{2} + 27720 x + 9075 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-94830820568684146627640045568=-\,2^{12}\cdot 3^{21}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{3}{10} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} - \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10} a$, $\frac{1}{20} a^{15} + \frac{1}{5} a^{13} - \frac{3}{20} a^{12} - \frac{1}{5} a^{10} + \frac{1}{10} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{9}{20} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{4}$, $\frac{1}{78501203841940} a^{16} - \frac{273071899921}{15700240768388} a^{15} - \frac{162409903527}{19625300960485} a^{14} - \frac{15220741988417}{78501203841940} a^{13} + \frac{10293465664799}{78501203841940} a^{12} - \frac{965849825392}{3925060192097} a^{11} + \frac{61227926479}{3925060192097} a^{10} + \frac{5960614421743}{39250601920970} a^{9} + \frac{1601241985051}{19625300960485} a^{8} + \frac{259537937913}{7850120384194} a^{7} + \frac{87547591636}{356823653827} a^{6} + \frac{7354901410244}{19625300960485} a^{5} - \frac{4337912052677}{78501203841940} a^{4} - \frac{3087902127449}{15700240768388} a^{3} + \frac{831266302737}{1784118269135} a^{2} + \frac{20804985256483}{78501203841940} a + \frac{274820197227}{1427294615308}$, $\frac{1}{2289460998142077682340} a^{17} - \frac{11507581}{2289460998142077682340} a^{16} + \frac{1568223270207341563}{208132818012916152940} a^{15} - \frac{50128555647454210787}{2289460998142077682340} a^{14} - \frac{384595299649538697481}{2289460998142077682340} a^{13} - \frac{2859639534037299139}{15365510054644816660} a^{12} - \frac{9200144419367126751}{52033204503229038235} a^{11} + \frac{5171395277196414501}{52033204503229038235} a^{10} - \frac{134590880341000714591}{572365249535519420585} a^{9} - \frac{6487420930878749493}{104066409006458076470} a^{8} + \frac{102233754694970646113}{1144730499071038841170} a^{7} - \frac{177911834169091043543}{1144730499071038841170} a^{6} + \frac{267058969870286077}{41626563602583230588} a^{5} + \frac{158974280008670612397}{457892199628415536468} a^{4} - \frac{927899565238683684657}{2289460998142077682340} a^{3} - \frac{419188275277900950999}{2289460998142077682340} a^{2} - \frac{630068795801758598653}{2289460998142077682340} a - \frac{784526973216853145}{41626563602583230588}$
Class group and class number
$C_{6}\times C_{18}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13451885127}{104205917046220} a^{17} + \frac{3030524337}{52102958523110} a^{16} - \frac{43482507691}{52102958523110} a^{15} + \frac{48066856707}{104205917046220} a^{14} - \frac{8452519282}{2368316296505} a^{13} + \frac{10629500391}{473663259301} a^{12} - \frac{363570315287}{10420591704622} a^{11} + \frac{475190782455}{10420591704622} a^{10} - \frac{428370516369}{10420591704622} a^{9} - \frac{310785167499}{5210295852311} a^{8} - \frac{2968108603855}{10420591704622} a^{7} + \frac{4386363388461}{10420591704622} a^{6} - \frac{13430139288823}{104205917046220} a^{5} + \frac{3328990547169}{26051479261555} a^{4} - \frac{4714210064152}{26051479261555} a^{3} - \frac{164780039744607}{104205917046220} a^{2} - \frac{207543289461261}{52102958523110} a - \frac{1527742921487}{947326518602} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2038760.66718 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.38988.2 x3, 3.1.1083.1 x3, 3.1.38988.1 x3, 3.1.108.1 x3, 6.0.4560192432.2, 6.0.3518667.2, 6.0.4560192432.1, 6.0.34992.1, 9.1.177792782538816.5 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |