Normalized defining polynomial
\( x^{18} - 3 x^{17} + 24 x^{16} - 57 x^{15} + 339 x^{14} - 750 x^{13} + 2691 x^{12} - 4620 x^{11} + 12813 x^{10} - 19451 x^{9} + 38334 x^{8} - 40263 x^{7} + 55569 x^{6} - 41604 x^{5} + 50556 x^{4} - 25632 x^{3} + 19056 x^{2} + 1056 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-94412655580832901097225443=-\,3^{33}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{9} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{9} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{12} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{7}{18} a^{4} - \frac{4}{9} a^{3} + \frac{1}{6} a^{2} + \frac{7}{18} a - \frac{1}{9}$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{13} - \frac{1}{18} a^{12} - \frac{1}{36} a^{11} + \frac{1}{36} a^{10} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} + \frac{1}{4} a^{6} + \frac{11}{36} a^{5} + \frac{1}{9} a^{4} - \frac{7}{36} a^{3} + \frac{7}{36} a^{2} - \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{6552} a^{15} - \frac{1}{2184} a^{14} + \frac{1}{273} a^{13} + \frac{199}{6552} a^{12} + \frac{23}{504} a^{11} + \frac{149}{3276} a^{10} - \frac{79}{2184} a^{9} - \frac{73}{546} a^{8} + \frac{95}{2184} a^{7} + \frac{2141}{6552} a^{6} + \frac{317}{1092} a^{5} + \frac{101}{312} a^{4} - \frac{1303}{6552} a^{3} - \frac{239}{1638} a^{2} + \frac{599}{1638} a + \frac{109}{273}$, $\frac{1}{89906544} a^{16} + \frac{6197}{89906544} a^{15} - \frac{43}{208117} a^{14} + \frac{345559}{89906544} a^{13} + \frac{582539}{89906544} a^{12} + \frac{124805}{4994808} a^{11} - \frac{344699}{12843792} a^{10} - \frac{281665}{22476636} a^{9} + \frac{255539}{1427088} a^{8} + \frac{39869021}{89906544} a^{7} + \frac{292781}{6421896} a^{6} + \frac{1534241}{9989616} a^{5} - \frac{41903191}{89906544} a^{4} + \frac{9795733}{22476636} a^{3} + \frac{427003}{2497404} a^{2} + \frac{1404407}{5619159} a - \frac{1550498}{5619159}$, $\frac{1}{1917939765875685892704} a^{17} - \frac{498169265107}{1917939765875685892704} a^{16} + \frac{3357284207163763}{159828313822973824392} a^{15} + \frac{23198241464824195843}{1917939765875685892704} a^{14} - \frac{41925841714997971117}{1917939765875685892704} a^{13} - \frac{808241134881765707}{24588971357380588368} a^{12} + \frac{49188377641135423783}{1917939765875685892704} a^{11} - \frac{14523954925847097397}{479484941468921473176} a^{10} + \frac{7691064100170312971}{639313255291895297568} a^{9} - \frac{462335888633762170987}{1917939765875685892704} a^{8} + \frac{334427612078258024045}{958969882937842946352} a^{7} + \frac{3861129316171803809}{91330465041699328224} a^{6} - \frac{422823004726507425895}{1917939765875685892704} a^{5} + \frac{23492509182959305289}{239742470734460736588} a^{4} - \frac{17837130249627506689}{79914156911486912196} a^{3} + \frac{14196548293262461591}{59935617683615184147} a^{2} + \frac{2950764138370009616}{8562231097659312021} a + \frac{642751939174314956}{2854077032553104007}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5568121222310585}{5269065290867268936} a^{17} + \frac{2648474003123738183}{958969882937842946352} a^{16} - \frac{1803752061852910285}{73766914072141765104} a^{15} + \frac{6230069533212895969}{119871235367230368294} a^{14} - \frac{328723940402393836243}{958969882937842946352} a^{13} + \frac{654702817928701150397}{958969882937842946352} a^{12} - \frac{1268893230194125850537}{479484941468921473176} a^{11} + \frac{569581439928751433057}{136995697562548992336} a^{10} - \frac{750369654097157629363}{59935617683615184147} a^{9} + \frac{2405561756782615213369}{136995697562548992336} a^{8} - \frac{34911620905285412518973}{958969882937842946352} a^{7} + \frac{2477780783887309761179}{68497848781274496168} a^{6} - \frac{51125569653615529665641}{958969882937842946352} a^{5} + \frac{36832463135176233751147}{958969882937842946352} a^{4} - \frac{23060522071351300901605}{479484941468921473176} a^{3} + \frac{1411781640701054913328}{59935617683615184147} a^{2} - \frac{2281522485447591035389}{119871235367230368294} a - \frac{39572534057471508887}{59935617683615184147} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 958684.150365 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3$ (as 18T15):
| A solvable group of order 54 |
| The 22 conjugacy class representatives for $C_2\times He_3$ |
| Character table for $C_2\times He_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.9.5609891727441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |