Normalized defining polynomial
\( x^{18} - x^{17} - 82 x^{16} + 38 x^{15} + 2995 x^{14} - 605 x^{13} - 44338 x^{12} + 38123 x^{11} + 492348 x^{10} + 39697 x^{9} - 905428 x^{8} - 6535669 x^{7} + 37954104 x^{6} + 3616657 x^{5} + 155971711 x^{4} - 289152616 x^{3} + 1085934684 x^{2} + 874624481 x + 4397661349 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-94186295366043352700011964780992402944000000000=-\,2^{18}\cdot 3^{9}\cdot 5^{9}\cdot 163^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $407.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{74} a^{14} - \frac{7}{74} a^{13} - \frac{21}{74} a^{11} + \frac{13}{37} a^{10} - \frac{15}{74} a^{9} - \frac{4}{37} a^{8} - \frac{25}{74} a^{7} - \frac{5}{37} a^{6} - \frac{27}{74} a^{5} + \frac{17}{37} a^{4} - \frac{7}{74} a^{3} + \frac{11}{37} a^{2} - \frac{35}{74} a - \frac{7}{74}$, $\frac{1}{74} a^{15} - \frac{6}{37} a^{13} + \frac{8}{37} a^{12} - \frac{5}{37} a^{11} - \frac{9}{37} a^{10} - \frac{1}{37} a^{9} + \frac{15}{37} a^{8} + \frac{7}{37} a^{6} + \frac{15}{37} a^{5} - \frac{14}{37} a^{4} + \frac{5}{37} a^{3} + \frac{4}{37} a^{2} + \frac{7}{74} a - \frac{6}{37}$, $\frac{1}{68929594} a^{16} + \frac{87191}{68929594} a^{15} - \frac{81701}{68929594} a^{14} - \frac{17114093}{68929594} a^{13} - \frac{2891995}{34464797} a^{12} + \frac{17913861}{68929594} a^{11} - \frac{16647121}{34464797} a^{10} - \frac{19835443}{68929594} a^{9} + \frac{8287591}{34464797} a^{8} + \frac{20536467}{68929594} a^{7} + \frac{16988034}{34464797} a^{6} - \frac{10521559}{68929594} a^{5} + \frac{13370548}{34464797} a^{4} - \frac{2495501}{68929594} a^{3} + \frac{12198029}{68929594} a^{2} - \frac{13474870}{34464797} a + \frac{11195183}{68929594}$, $\frac{1}{3829014615064525103130213119894325116443201990381031868987849254} a^{17} - \frac{35937710576729918880487306079000892081236166051581005}{10971388581846776799800037592820415806427512866421294753546846} a^{16} - \frac{607597705850178125590126008839414336702621691210341441715113}{103486881488230408192708462699846624768735188929217077540212142} a^{15} + \frac{83967267452583873986789405286701577299352381728424836186089}{112618076913662503033241562349833091660094176187677407911407331} a^{14} - \frac{553554646008993813587081866283162750442690272213125838067151029}{3829014615064525103130213119894325116443201990381031868987849254} a^{13} - \frac{14557833589031827205974402106985230241758274625359967151286479}{72245558774802360436419115469704247480060414912849657905431118} a^{12} - \frac{1099553715229014143256690418245491052082761189608242977781689057}{3829014615064525103130213119894325116443201990381031868987849254} a^{11} + \frac{810292432383384860686013626290096634688960962897817992095576183}{3829014615064525103130213119894325116443201990381031868987849254} a^{10} - \frac{269769046465076511997964771305090010104705911898797326079849021}{3829014615064525103130213119894325116443201990381031868987849254} a^{9} - \frac{1090889507368125379101544139322294610225795502981961427861741223}{3829014615064525103130213119894325116443201990381031868987849254} a^{8} - \frac{154938024785259552454168454981949362511816104800294915913803723}{3829014615064525103130213119894325116443201990381031868987849254} a^{7} - \frac{1051950798853698988963299578250050541187398922014328067475727797}{3829014615064525103130213119894325116443201990381031868987849254} a^{6} + \frac{1051176624101480729460647484294584350609622808519845095817640967}{3829014615064525103130213119894325116443201990381031868987849254} a^{5} + \frac{1809905716544780301987045184407405176487193783802486190578187339}{3829014615064525103130213119894325116443201990381031868987849254} a^{4} + \frac{555936065793617551714472141634527090542239280126210681745528389}{1914507307532262551565106559947162558221600995190515934493924627} a^{3} - \frac{37195538578407143845672193252187648736835120064913166277048543}{1914507307532262551565106559947162558221600995190515934493924627} a^{2} - \frac{902115681329724275975432698855606935718806980378556451034140267}{1914507307532262551565106559947162558221600995190515934493924627} a - \frac{1703605377496096877389602654756715037306505091347833252809611191}{3829014615064525103130213119894325116443201990381031868987849254}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{10370204}$, which has order $165923264$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87986390.20265311 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.26569.1, 3.3.1304.1, 6.0.2382452193375.3, 6.0.5738904000.3, 9.9.1565248123502319104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $163$ | 163.6.4.1 | $x^{6} + 5216 x^{3} + 35363339$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 163.12.10.1 | $x^{12} + 266994 x^{6} + 47068604209$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |