Normalized defining polynomial
\( x^{18} - 6 x^{16} - 8 x^{15} - 18 x^{14} + 72 x^{13} + 318 x^{12} - 828 x^{11} + 870 x^{10} + 728 x^{9} - 11268 x^{8} + 24432 x^{7} + 3393 x^{6} - 108036 x^{5} + 239880 x^{4} - 286464 x^{3} + 212544 x^{2} - 94464 x + 20992 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9373517170938828381535914021617664=-\,2^{30}\cdot 3^{18}\cdot 41^{3}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{8} a^{13} + \frac{13}{32} a^{12} - \frac{3}{8} a^{11} - \frac{9}{32} a^{10} + \frac{3}{8} a^{9} - \frac{1}{32} a^{8} + \frac{5}{16} a^{7} + \frac{3}{32} a^{6} - \frac{3}{8} a^{5} - \frac{1}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{64} a^{2} - \frac{3}{16} a + \frac{1}{8}$, $\frac{1}{256} a^{15} - \frac{19}{128} a^{13} - \frac{9}{32} a^{12} + \frac{55}{128} a^{11} - \frac{7}{32} a^{10} - \frac{1}{128} a^{9} + \frac{17}{64} a^{8} + \frac{19}{128} a^{7} - \frac{5}{32} a^{6} - \frac{17}{64} a^{5} - \frac{1}{16} a^{4} + \frac{65}{256} a^{3} - \frac{1}{64} a^{2} - \frac{3}{32} a + \frac{1}{4}$, $\frac{1}{8192} a^{16} + \frac{3}{2048} a^{15} - \frac{31}{4096} a^{14} + \frac{59}{512} a^{13} - \frac{433}{4096} a^{12} - \frac{157}{512} a^{11} - \frac{2041}{4096} a^{10} + \frac{507}{2048} a^{9} - \frac{1085}{4096} a^{8} + \frac{51}{128} a^{7} + \frac{787}{2048} a^{6} - \frac{3}{32} a^{5} + \frac{3553}{8192} a^{4} - \frac{239}{1024} a^{3} - \frac{67}{256} a^{2} + \frac{9}{128} a + \frac{17}{128}$, $\frac{1}{97174846048156062278434816} a^{17} + \frac{1475037367229912590709}{24293711512039015569608704} a^{16} - \frac{812305558647435721877}{2557232790740949007327232} a^{15} - \frac{8418988700714361268399}{1518356969502438473100544} a^{14} + \frac{9599826444088301317949647}{48587423024078031139217408} a^{13} - \frac{26978391694246798466733}{64610934872444190344704} a^{12} + \frac{10981594585782783682122759}{48587423024078031139217408} a^{11} + \frac{4029795048363902295911479}{24293711512039015569608704} a^{10} - \frac{10334042890439532120207}{214041511119286480789504} a^{9} - \frac{2662652114643440123545593}{6073427878009753892402176} a^{8} - \frac{9527390801472651495406413}{24293711512039015569608704} a^{7} - \frac{514670039436687739607037}{3036713939004876946201088} a^{6} - \frac{1797400080773638094663749}{5114465581481898014654464} a^{5} + \frac{612256084852531103332565}{6073427878009753892402176} a^{4} - \frac{573211419901181777877707}{3036713939004876946201088} a^{3} + \frac{710433174231870520203245}{1518356969502438473100544} a^{2} - \frac{711877863451746338198271}{1518356969502438473100544} a + \frac{19321242053576539170493}{189794621187804809137568}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{31768113209358041829}{1518356969502438473100544} a^{17} - \frac{120184799374643726697}{759178484751219236550272} a^{16} - \frac{23357103403040031437}{39956762355327328239488} a^{15} - \frac{97088816046955916115}{379589242375609618275136} a^{14} + \frac{1128688684431995239179}{759178484751219236550272} a^{13} + \frac{80395521499261285581}{8076366859055523793088} a^{12} + \frac{12417395581733548864707}{759178484751219236550272} a^{11} - \frac{10446687814831583539581}{189794621187804809137568} a^{10} + \frac{72938094597316799609}{3344398611238851262336} a^{9} - \frac{16569688792158666855333}{379589242375609618275136} a^{8} - \frac{200871555629538248309241}{379589242375609618275136} a^{7} + \frac{294862252750319166599315}{189794621187804809137568} a^{6} - \frac{19008848312510544265977}{79913524710654656478976} a^{5} - \frac{4230729911276381301680979}{759178484751219236550272} a^{4} + \frac{618060060759703487370659}{47448655296951202284392} a^{3} - \frac{690118604223860173127499}{47448655296951202284392} a^{2} + \frac{246824924262841572033801}{23724327648475601142196} a - \frac{41620373157065186208763}{11862163824237800571098} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23256887564.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 559872 |
| The 174 conjugacy class representatives for t18n903 are not computed |
| Character table for t18n903 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.83.1, 6.0.440896.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.16.21 | $x^{8} + 12 x^{7} + 20 x^{5} + 16 x^{4} + 40 x + 20$ | $4$ | $2$ | $16$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| 41 | Data not computed | ||||||
| $83$ | 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.12.6.1 | $x^{12} + 38881516 x^{6} - 3939040643 x^{2} + 377943071614564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |