Normalized defining polynomial
\( x^{18} - 4 x^{17} + 10 x^{16} - 21 x^{15} + 37 x^{14} - 58 x^{13} + 80 x^{12} - 97 x^{11} + 107 x^{10} - 106 x^{9} + 92 x^{8} - 71 x^{7} + 52 x^{6} - 39 x^{5} + 30 x^{4} - 20 x^{3} + 11 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9291932134821949543=-\,7^{15}\cdot 1399^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 1399$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{841} a^{17} - \frac{92}{841} a^{16} - \frac{304}{841} a^{15} - \frac{181}{841} a^{14} - \frac{14}{841} a^{13} + \frac{333}{841} a^{12} + \frac{211}{841} a^{11} - \frac{163}{841} a^{10} + \frac{154}{841} a^{9} - \frac{202}{841} a^{8} + \frac{207}{841} a^{7} + \frac{215}{841} a^{6} - \frac{366}{841} a^{5} + \frac{211}{841} a^{4} - \frac{36}{841} a^{3} - \frac{216}{841} a^{2} - \frac{324}{841} a - \frac{86}{841}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1128}{841} a^{17} - \frac{6220}{841} a^{16} + \frac{16195}{841} a^{15} - \frac{33445}{841} a^{14} + \frac{60739}{841} a^{13} - \frac{94495}{841} a^{12} + \frac{131201}{841} a^{11} - \frac{158634}{841} a^{10} + \frac{170348}{841} a^{9} - \frac{168986}{841} a^{8} + \frac{144350}{841} a^{7} - \frac{103972}{841} a^{6} + \frac{74091}{841} a^{5} - \frac{58024}{841} a^{4} + \frac{45174}{841} a^{3} - \frac{30875}{841} a^{2} + \frac{12978}{841} a - \frac{3657}{841} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 509.337225135 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n286 |
| Character table for t18n286 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.3.164590951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 1399 | Data not computed | ||||||