Normalized defining polynomial
\( x^{18} - 9 x^{16} - 11 x^{15} + 21 x^{14} + 69 x^{13} + 54 x^{12} - 75 x^{11} - 219 x^{10} - 205 x^{9} - 6 x^{8} + 231 x^{7} + 342 x^{6} + 303 x^{5} + 201 x^{4} + 103 x^{3} + 39 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9283601972222640243=-\,3^{21}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{179} a^{15} - \frac{1}{179} a^{14} - \frac{39}{179} a^{13} + \frac{29}{179} a^{12} - \frac{22}{179} a^{11} + \frac{4}{179} a^{10} + \frac{41}{179} a^{9} + \frac{62}{179} a^{8} - \frac{61}{179} a^{7} - \frac{74}{179} a^{6} - \frac{80}{179} a^{5} - \frac{40}{179} a^{4} + \frac{70}{179} a^{3} - \frac{65}{179} a^{2} + \frac{12}{179} a + \frac{6}{179}$, $\frac{1}{179} a^{16} - \frac{40}{179} a^{14} - \frac{10}{179} a^{13} + \frac{7}{179} a^{12} - \frac{18}{179} a^{11} + \frac{45}{179} a^{10} - \frac{76}{179} a^{9} + \frac{1}{179} a^{8} + \frac{44}{179} a^{7} + \frac{25}{179} a^{6} + \frac{59}{179} a^{5} + \frac{30}{179} a^{4} + \frac{5}{179} a^{3} - \frac{53}{179} a^{2} + \frac{18}{179} a + \frac{6}{179}$, $\frac{1}{119393} a^{17} + \frac{122}{119393} a^{16} + \frac{201}{119393} a^{15} - \frac{835}{119393} a^{14} + \frac{32885}{119393} a^{13} + \frac{13374}{119393} a^{12} - \frac{41821}{119393} a^{11} + \frac{17655}{119393} a^{10} - \frac{40739}{119393} a^{9} + \frac{788}{119393} a^{8} - \frac{320}{667} a^{7} + \frac{68}{5191} a^{6} + \frac{28402}{119393} a^{5} - \frac{29066}{119393} a^{4} + \frac{12594}{119393} a^{3} + \frac{47160}{119393} a^{2} - \frac{59346}{119393} a - \frac{47942}{119393}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{100290}{119393} a^{17} - \frac{26081}{119393} a^{16} - \frac{889562}{119393} a^{15} - \frac{856728}{119393} a^{14} + \frac{2230237}{119393} a^{13} + \frac{6188582}{119393} a^{12} + \frac{4102693}{119393} a^{11} - \frac{7808820}{119393} a^{10} - \frac{19646959}{119393} a^{9} - \frac{16689982}{119393} a^{8} + \frac{1534437}{119393} a^{7} + \frac{948902}{5191} a^{6} + \frac{29930698}{119393} a^{5} + \frac{25103525}{119393} a^{4} + \frac{15893659}{119393} a^{3} + \frac{7431791}{119393} a^{2} + \frac{2550686}{119393} a + \frac{457899}{119393} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296.277259881 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3.S_3^2$ (as 18T57):
| A solvable group of order 108 |
| The 11 conjugacy class representatives for $C_3.S_3^2$ |
| Character table for $C_3.S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.31.1, 6.0.25947.1, 9.1.586376253.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.14.5 | $x^{12} - 12 x^{11} - 3 x^{10} - 9 x^{7} + 9 x^{5} + 9 x^{2} + 9$ | $6$ | $2$ | $14$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ | |
| $31$ | 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |