Normalized defining polynomial
\( x^{18} - x^{17} + 470 x^{16} + 2513 x^{15} + 149163 x^{14} + 956039 x^{13} + 28464247 x^{12} + 225068368 x^{11} + 3988265085 x^{10} + 28542470943 x^{9} + 336726026476 x^{8} + 2290282965516 x^{7} + 19375023447318 x^{6} + 96784777040119 x^{5} + 380485121195032 x^{4} + 969083882090814 x^{3} + 1861722334970505 x^{2} + 2126907556454464 x + 1628413597910449 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-924932277939078761663470646803127775979456162566125826048=-\,2^{12}\cdot 3^{9}\cdot 7^{6}\cdot 19^{14}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1461.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{5} + \frac{1}{7} a^{2}$, $\frac{1}{49} a^{6} - \frac{1}{49} a^{5} + \frac{1}{49} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{343} a^{7} - \frac{1}{343} a^{6} - \frac{20}{343} a^{5} + \frac{2}{49} a^{4} + \frac{8}{49} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{2401} a^{8} - \frac{1}{2401} a^{7} - \frac{20}{2401} a^{6} - \frac{12}{343} a^{5} + \frac{22}{343} a^{4} + \frac{23}{49} a^{3} + \frac{15}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{16807} a^{9} - \frac{1}{16807} a^{8} - \frac{20}{16807} a^{7} - \frac{12}{2401} a^{6} + \frac{169}{2401} a^{5} + \frac{2}{343} a^{4} - \frac{160}{343} a^{3} - \frac{18}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{117649} a^{10} - \frac{1}{117649} a^{9} - \frac{20}{117649} a^{8} - \frac{12}{16807} a^{7} + \frac{169}{16807} a^{6} - \frac{145}{2401} a^{5} - \frac{13}{2401} a^{4} + \frac{10}{343} a^{3} + \frac{10}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{823543} a^{11} - \frac{1}{823543} a^{10} - \frac{20}{823543} a^{9} - \frac{12}{117649} a^{8} + \frac{169}{117649} a^{7} - \frac{145}{16807} a^{6} - \frac{13}{16807} a^{5} + \frac{10}{2401} a^{4} + \frac{59}{343} a^{3} + \frac{3}{49} a^{2} + \frac{1}{7} a$, $\frac{1}{40353607} a^{12} - \frac{8}{40353607} a^{11} + \frac{134}{40353607} a^{10} - \frac{13}{5764801} a^{9} + \frac{176}{5764801} a^{8} + \frac{71}{823543} a^{7} + \frac{5286}{823543} a^{6} + \frac{8150}{117649} a^{5} - \frac{571}{16807} a^{4} - \frac{985}{2401} a^{3} - \frac{34}{343} a^{2}$, $\frac{1}{282475249} a^{13} - \frac{1}{282475249} a^{12} + \frac{78}{282475249} a^{11} + \frac{121}{40353607} a^{10} + \frac{85}{40353607} a^{9} + \frac{247}{5764801} a^{8} + \frac{5783}{5764801} a^{7} - \frac{3371}{823543} a^{6} + \frac{2777}{117649} a^{5} - \frac{870}{16807} a^{4} - \frac{480}{2401} a^{3} - \frac{34}{343} a^{2} - \frac{3}{7} a$, $\frac{1}{1977326743} a^{14} - \frac{1}{1977326743} a^{13} - \frac{20}{1977326743} a^{12} - \frac{110}{282475249} a^{11} + \frac{953}{282475249} a^{10} + \frac{1066}{40353607} a^{9} + \frac{575}{40353607} a^{8} + \frac{45}{5764801} a^{7} + \frac{5190}{823543} a^{6} + \frac{4971}{117649} a^{5} + \frac{844}{16807} a^{4} + \frac{1005}{2401} a^{3} + \frac{145}{343} a^{2} + \frac{2}{7} a$, $\frac{1}{38663176157734020697} a^{15} + \frac{8373925097}{38663176157734020697} a^{14} + \frac{11263916553}{38663176157734020697} a^{13} - \frac{46875616705}{5523310879676288671} a^{12} - \frac{1911060024103}{5523310879676288671} a^{11} - \frac{780653273457}{789044411382326953} a^{10} - \frac{2618399918784}{789044411382326953} a^{9} + \frac{25498061984}{2300421024438271} a^{8} - \frac{1995390249812}{16102947171067897} a^{7} + \frac{1070493604067}{328631574919753} a^{6} - \frac{20288423543516}{328631574919753} a^{5} + \frac{110143633484}{46947367845679} a^{4} - \frac{2272530995965}{6706766835097} a^{3} - \frac{195102538249}{958109547871} a^{2} - \frac{6012943872}{19553256079} a - \frac{1279970415}{2793322297}$, $\frac{1}{1894495631728967014153} a^{16} - \frac{1}{1894495631728967014153} a^{15} + \frac{10288961511}{99710296406787737587} a^{14} - \frac{438460332483}{270642233104138144879} a^{13} + \frac{258167209238}{270642233104138144879} a^{12} + \frac{13651512599020}{38663176157734020697} a^{11} - \frac{163664007506446}{38663176157734020697} a^{10} - \frac{85931893679573}{5523310879676288671} a^{9} - \frac{28294533773584}{789044411382326953} a^{8} + \frac{20473041184544}{16102947171067897} a^{7} - \frac{6458425721723}{847523535319363} a^{6} + \frac{126007018278277}{2300421024438271} a^{5} + \frac{4095007287561}{328631574919753} a^{4} - \frac{1092912731721}{6706766835097} a^{3} + \frac{60094341203}{958109547871} a^{2} + \frac{6062634819}{19553256079} a + \frac{21}{1387}$, $\frac{1}{13924871211742891053306741196143217} a^{17} + \frac{2623873960574}{13924871211742891053306741196143217} a^{16} + \frac{34667518413347}{13924871211742891053306741196143217} a^{15} - \frac{254645065530578408515009}{1989267315963270150472391599449031} a^{14} + \frac{3045056851620810805371888}{1989267315963270150472391599449031} a^{13} + \frac{928282796823490708963008}{284181045137610021496055942778433} a^{12} - \frac{90039358678250709660018778}{284181045137610021496055942778433} a^{11} + \frac{117572410357079592019737859}{40597292162515717356579420396919} a^{10} + \frac{4309199251432420617627489}{446124089697974916006367257109} a^{9} - \frac{20745866157706931081986352}{118359452368850487920056619233} a^{8} + \frac{90781678298691115716085874}{118359452368850487920056619233} a^{7} - \frac{123728438115107877950713840}{16908493195550069702865231319} a^{6} + \frac{29140914719055446399903378}{2415499027935724243266461617} a^{5} - \frac{387802685164659531768770}{7042271218471499251505719} a^{4} + \frac{1914246476032024954813764}{7042271218471499251505719} a^{3} - \frac{53703094906544622302755}{143719820785132637785831} a^{2} + \frac{178256194129637639196}{1579338689946512503141} a - \frac{63538904080008903560}{419008223863360460017}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{12}\times C_{12}\times C_{5992980}$, which has order $23300706240$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13319239110400848292}{13924871211742891053306741196143217} a^{17} + \frac{29052704303968118105}{13924871211742891053306741196143217} a^{16} - \frac{6309400774842547927576}{13924871211742891053306741196143217} a^{15} - \frac{3709691104306704833014}{1989267315963270150472391599449031} a^{14} - \frac{280493621779928397210506}{1989267315963270150472391599449031} a^{13} - \frac{212971409842228980341223}{284181045137610021496055942778433} a^{12} - \frac{7532313985012072650047860}{284181045137610021496055942778433} a^{11} - \frac{7497470681830641414398890}{40597292162515717356579420396919} a^{10} - \frac{85188039977429656976830}{23480215247261837684545645111} a^{9} - \frac{2746657417912094045051269}{118359452368850487920056619233} a^{8} - \frac{35387490237272892539865132}{118359452368850487920056619233} a^{7} - \frac{31490333246084419364566316}{16908493195550069702865231319} a^{6} - \frac{40346163786633045564687236}{2415499027935724243266461617} a^{5} - \frac{3695089768295661070354781}{49295898529300494760540033} a^{4} - \frac{2088104312050943692329246}{7042271218471499251505719} a^{3} - \frac{94641865678157899438226}{143719820785132637785831} a^{2} - \frac{2318856507603891152580}{1579338689946512503141} a - \frac{1455755149046857715}{2126945298798784061} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1270819096089.6284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.38836.1, 3.3.1923769.2, 6.0.40722342192.1, 6.0.99923953464747.4, 9.9.216775063213574541708241216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $19$ | 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.6.5.1 | $x^{6} - 304$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.1 | $x^{6} - 304$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $73$ | 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.6.5.6 | $x^{6} + 228125$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 73.6.5.6 | $x^{6} + 228125$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |