Normalized defining polynomial
\( x^{18} - 9 x^{17} + 33 x^{16} - 52 x^{15} + 84 x^{14} - 540 x^{13} + 3178 x^{12} - 11892 x^{11} + 36576 x^{10} - 94398 x^{9} + 242916 x^{8} - 534324 x^{7} + 1183880 x^{6} - 2079090 x^{5} + 3606933 x^{4} - 4490689 x^{3} + 5618562 x^{2} - 3981963 x + 3180563 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9217661592820801741280239766571=-\,3^{24}\cdot 7^{12}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(693=3^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{693}(1,·)$, $\chi_{693}(67,·)$, $\chi_{693}(331,·)$, $\chi_{693}(142,·)$, $\chi_{693}(463,·)$, $\chi_{693}(529,·)$, $\chi_{693}(274,·)$, $\chi_{693}(340,·)$, $\chi_{693}(604,·)$, $\chi_{693}(100,·)$, $\chi_{693}(232,·)$, $\chi_{693}(298,·)$, $\chi_{693}(43,·)$, $\chi_{693}(109,·)$, $\chi_{693}(562,·)$, $\chi_{693}(373,·)$, $\chi_{693}(505,·)$, $\chi_{693}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{36068} a^{16} - \frac{3745}{18034} a^{15} + \frac{2063}{18034} a^{14} + \frac{3701}{18034} a^{13} + \frac{1819}{18034} a^{12} - \frac{31}{18034} a^{11} + \frac{1608}{9017} a^{10} - \frac{1285}{9017} a^{9} - \frac{1409}{18034} a^{8} - \frac{4453}{9017} a^{7} + \frac{858}{9017} a^{6} - \frac{56}{127} a^{5} - \frac{953}{9017} a^{4} + \frac{1881}{18034} a^{3} + \frac{11255}{36068} a^{2} + \frac{4277}{18034} a - \frac{17965}{36068}$, $\frac{1}{21776211946736141773776215993848042042394812} a^{17} - \frac{65276629670209803952168366735669733339}{10888105973368070886888107996924021021197406} a^{16} - \frac{1898431225563290775084581979915384771334967}{10888105973368070886888107996924021021197406} a^{15} - \frac{194110183337236842419447889737822921435005}{5444052986684035443444053998462010510598703} a^{14} - \frac{1109311798914616209080761794087776527165388}{5444052986684035443444053998462010510598703} a^{13} - \frac{2399071067892754821476347022774272154519351}{10888105973368070886888107996924021021197406} a^{12} + \frac{1302962743920113870900147324961573271844053}{5444052986684035443444053998462010510598703} a^{11} + \frac{232922639325320632172161762973574618320621}{10888105973368070886888107996924021021197406} a^{10} + \frac{1074483305771666395418510320435087702061129}{5444052986684035443444053998462010510598703} a^{9} - \frac{1176536509540153208877405710006959118478764}{5444052986684035443444053998462010510598703} a^{8} - \frac{958955811957143233841962095167990006062023}{10888105973368070886888107996924021021197406} a^{7} + \frac{1242470345265288794665371874553799074938111}{5444052986684035443444053998462010510598703} a^{6} - \frac{4209479181815331690645318865696016954667889}{10888105973368070886888107996924021021197406} a^{5} - \frac{989949539637290109526089555824942917936715}{10888105973368070886888107996924021021197406} a^{4} + \frac{1398023879586111942252789796958976338404057}{21776211946736141773776215993848042042394812} a^{3} + \frac{2243752140223369634358852438424913943429595}{10888105973368070886888107996924021021197406} a^{2} - \frac{5846766751963184980943904744232230958010607}{21776211946736141773776215993848042042394812} a - \frac{147246568373702776579226282106419720596184}{5444052986684035443444053998462010510598703}$
Class group and class number
$C_{36}\times C_{36}$, which has order $1296$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, \(\Q(\zeta_{7})^+\), 3.3.3969.2, 6.0.8732691.1, 6.0.20967191091.4, 6.0.3195731.1, 6.0.20967191091.5, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |