Normalized defining polynomial
\( x^{18} - 6 x^{17} + 24 x^{16} - 76 x^{15} + 207 x^{14} - 474 x^{13} + 927 x^{12} - 1560 x^{11} + 2301 x^{10} - 2970 x^{9} + 3360 x^{8} - 3294 x^{7} + 2810 x^{6} - 2088 x^{5} + 1371 x^{4} - 770 x^{3} + 357 x^{2} - 120 x + 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9184336312155528572928=-\,2^{12}\cdot 3^{21}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{9} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a^{2} - \frac{1}{10} a$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{10} - \frac{1}{2} a^{8} + \frac{3}{10} a^{7} + \frac{1}{10} a^{6} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{10} a^{3} - \frac{1}{10} a^{2}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{10} - \frac{1}{10} a^{9} + \frac{3}{10} a^{8} - \frac{2}{5} a^{7} - \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{15} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{3}{10} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{1150} a^{16} + \frac{1}{115} a^{15} - \frac{43}{1150} a^{14} - \frac{22}{575} a^{13} - \frac{51}{1150} a^{12} - \frac{21}{575} a^{11} - \frac{13}{1150} a^{10} - \frac{27}{575} a^{9} + \frac{239}{575} a^{8} + \frac{491}{1150} a^{7} + \frac{1}{5} a^{6} - \frac{163}{575} a^{5} - \frac{53}{575} a^{4} + \frac{413}{1150} a^{3} - \frac{252}{575} a^{2} - \frac{93}{230} a + \frac{15}{46}$, $\frac{1}{353050} a^{17} - \frac{61}{176525} a^{16} + \frac{641}{176525} a^{15} + \frac{2356}{176525} a^{14} + \frac{8057}{353050} a^{13} - \frac{294}{7061} a^{12} - \frac{857}{176525} a^{11} + \frac{16356}{176525} a^{10} + \frac{41178}{176525} a^{9} + \frac{10748}{35305} a^{8} - \frac{163137}{353050} a^{7} - \frac{84851}{353050} a^{6} + \frac{66041}{353050} a^{5} + \frac{14171}{35305} a^{4} + \frac{501}{35305} a^{3} - \frac{81827}{353050} a^{2} - \frac{317}{1535} a + \frac{6185}{14122}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1689}{7675} a^{17} + \frac{334}{307} a^{16} - \frac{61761}{15350} a^{15} + \frac{91586}{7675} a^{14} - \frac{474697}{15350} a^{13} + \frac{1007231}{15350} a^{12} - \frac{1826471}{15350} a^{11} + \frac{1413036}{7675} a^{10} - \frac{1923702}{7675} a^{9} + \frac{4503967}{15350} a^{8} - \frac{183397}{614} a^{7} + \frac{3921123}{15350} a^{6} - \frac{1464101}{7675} a^{5} + \frac{940403}{7675} a^{4} - \frac{546509}{7675} a^{3} + \frac{47448}{1535} a^{2} - \frac{15427}{1535} a + \frac{438}{307} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8731.342696996677 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.18443443392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |