Normalized defining polynomial
\( x^{18} - 3 x^{17} - 114 x^{16} + 116 x^{15} + 6198 x^{14} + 3654 x^{13} - 177376 x^{12} - 357180 x^{11} + 2726625 x^{10} + 9507061 x^{9} - 18115494 x^{8} - 124465920 x^{7} - 75971136 x^{6} + 717479952 x^{5} + 2450615328 x^{4} + 4627285632 x^{3} + 6736075776 x^{2} + 6649528320 x + 3470262272 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-91730128303217099071904424489633811022225631=-\,3^{24}\cdot 7^{12}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $276.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1953=3^{2}\cdot 7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1953}(1,·)$, $\chi_{1953}(781,·)$, $\chi_{1953}(718,·)$, $\chi_{1953}(466,·)$, $\chi_{1953}(340,·)$, $\chi_{1953}(88,·)$, $\chi_{1953}(25,·)$, $\chi_{1953}(1948,·)$, $\chi_{1953}(1885,·)$, $\chi_{1953}(1828,·)$, $\chi_{1953}(1576,·)$, $\chi_{1953}(1513,·)$, $\chi_{1953}(688,·)$, $\chi_{1953}(625,·)$, $\chi_{1953}(373,·)$, $\chi_{1953}(247,·)$, $\chi_{1953}(316,·)$, $\chi_{1953}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{512} a^{10} + \frac{1}{512} a^{9} - \frac{1}{256} a^{8} - \frac{7}{256} a^{7} - \frac{7}{512} a^{6} + \frac{1}{512} a^{5} + \frac{3}{64} a^{4} - \frac{29}{128} a^{3} - \frac{1}{32} a^{2} + \frac{1}{4} a$, $\frac{1}{512} a^{11} + \frac{1}{512} a^{9} - \frac{1}{512} a^{7} + \frac{27}{512} a^{5} - \frac{1}{16} a^{4} + \frac{9}{128} a^{3} + \frac{1}{16} a^{2} - \frac{1}{8} a$, $\frac{1}{2048} a^{12} - \frac{1}{1024} a^{11} + \frac{1}{2048} a^{10} - \frac{1}{1024} a^{9} + \frac{7}{2048} a^{8} - \frac{31}{1024} a^{7} - \frac{53}{2048} a^{6} + \frac{37}{1024} a^{5} - \frac{13}{512} a^{4} - \frac{33}{256} a^{3} - \frac{13}{64} a^{2} + \frac{3}{8} a$, $\frac{1}{4096} a^{13} + \frac{1}{4096} a^{11} - \frac{1}{1024} a^{10} + \frac{3}{4096} a^{9} + \frac{1}{512} a^{8} - \frac{61}{4096} a^{7} + \frac{23}{1024} a^{6} + \frac{9}{512} a^{5} + \frac{7}{128} a^{4} - \frac{33}{256} a^{3} - \frac{13}{64} a^{2} + \frac{1}{4} a$, $\frac{1}{8192} a^{14} - \frac{1}{8192} a^{13} + \frac{1}{8192} a^{12} - \frac{5}{8192} a^{11} + \frac{7}{8192} a^{10} - \frac{27}{8192} a^{9} + \frac{27}{8192} a^{8} - \frac{39}{8192} a^{7} + \frac{43}{2048} a^{6} - \frac{17}{1024} a^{5} + \frac{23}{512} a^{4} - \frac{19}{512} a^{3} + \frac{7}{128} a^{2} - \frac{1}{16} a$, $\frac{1}{65536} a^{15} - \frac{3}{65536} a^{14} + \frac{1}{65536} a^{13} - \frac{7}{65536} a^{12} + \frac{31}{65536} a^{11} + \frac{15}{65536} a^{10} + \frac{139}{65536} a^{9} + \frac{51}{65536} a^{8} - \frac{335}{16384} a^{7} - \frac{253}{8192} a^{6} - \frac{163}{4096} a^{5} + \frac{123}{4096} a^{4} + \frac{91}{1024} a^{3} - \frac{3}{32} a^{2} - \frac{7}{16} a$, $\frac{1}{102891520} a^{16} + \frac{117}{25722880} a^{15} - \frac{259}{5144576} a^{14} - \frac{637}{12861440} a^{13} + \frac{10771}{51445760} a^{12} + \frac{7}{160768} a^{11} + \frac{15519}{25722880} a^{10} + \frac{3817}{12861440} a^{9} - \frac{195823}{102891520} a^{8} + \frac{176651}{25722880} a^{7} - \frac{32961}{12861440} a^{6} + \frac{97083}{3215360} a^{5} - \frac{203863}{6430720} a^{4} - \frac{69445}{321536} a^{3} + \frac{263}{40192} a^{2} + \frac{703}{6280} a + \frac{279}{785}$, $\frac{1}{165826007403613063106997889346600619212800} a^{17} + \frac{32547947317868132698190457905467}{16582600740361306310699788934660061921280} a^{16} - \frac{125944744820569989996063485073577901}{41456501850903265776749472336650154803200} a^{15} + \frac{83352323429802629263017437026678241}{2591031365681454111046842021040634675200} a^{14} + \frac{226299217399391923853847584859444371}{3316520148072261262139957786932012384256} a^{13} - \frac{9632266447958923114736138636201812649}{41456501850903265776749472336650154803200} a^{12} + \frac{34487971661757342772316811366136459879}{41456501850903265776749472336650154803200} a^{11} - \frac{4701425991193610632853735228948723791}{5182062731362908222093684042081269350400} a^{10} + \frac{586560474526042048088555549839761210049}{165826007403613063106997889346600619212800} a^{9} + \frac{312454306622581081495581417534007511619}{82913003701806531553498944673300309606400} a^{8} - \frac{49007979523097392131598253581057530839}{2072825092545163288837473616832507740160} a^{7} - \frac{13381491715372060498678875564511183971}{2072825092545163288837473616832507740160} a^{6} - \frac{313630577854356181788344365254448016011}{10364125462725816444187368084162538700800} a^{5} - \frac{164256686112257105713121693162931650253}{5182062731362908222093684042081269350400} a^{4} - \frac{55220958876602647747098583439850376217}{259103136568145411104684202104063467520} a^{3} + \frac{11426486761448289675013683524462169433}{161939460355090881940427626315039667200} a^{2} - \frac{2248449403687843154381004966130179187}{10121216272193180121276726644689979200} a - \frac{38126428367612359697364389350482453}{316288008506036878789897707646561850}$
Class group and class number
$C_{3}\times C_{3}\times C_{114}\times C_{265734}$, which has order $272643084$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 219311185150.01114 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.3814209.2, 3.3.3814209.1, 3.3.961.1, 3.3.3969.1, 6.0.450993899166111.4, 6.0.450993899166111.1, 6.0.28629151.1, 6.0.469296461151.6, 9.9.55489838359499131329.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $31$ | 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |