Normalized defining polynomial
\( x^{18} - 9 x^{17} + 255 x^{16} - 1824 x^{15} + 24423 x^{14} - 137697 x^{13} + 1727788 x^{12} - 8466441 x^{11} - 43796637 x^{10} + 269577198 x^{9} + 5420996661 x^{8} - 22405758879 x^{7} + 238912851253 x^{6} - 660557469432 x^{5} - 10676966704536 x^{4} + 23268587608140 x^{3} + 505306443813876 x^{2} - 547038123493644 x + 948137416523604 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-91418944539476011360498909897881806021621599527281394659328=-\,2^{12}\cdot 3^{21}\cdot 7^{14}\cdot 13^{14}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1886.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{57} a^{9} - \frac{4}{19} a^{8} + \frac{9}{19} a^{7} + \frac{3}{19} a^{6} - \frac{6}{19} a^{5} - \frac{6}{19} a^{4} - \frac{1}{57} a^{3}$, $\frac{1}{171} a^{10} - \frac{1}{57} a^{8} - \frac{22}{57} a^{7} - \frac{8}{57} a^{6} + \frac{17}{57} a^{5} + \frac{11}{171} a^{4} - \frac{4}{57} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{171} a^{11} + \frac{23}{57} a^{8} + \frac{1}{3} a^{7} + \frac{26}{57} a^{6} - \frac{43}{171} a^{5} - \frac{22}{57} a^{4} - \frac{20}{57} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{995904} a^{12} - \frac{79}{38304} a^{11} - \frac{25}{12768} a^{10} - \frac{157}{25536} a^{9} + \frac{6067}{27664} a^{8} + \frac{447}{1064} a^{7} - \frac{4411}{10944} a^{6} + \frac{10249}{38304} a^{5} + \frac{16609}{165984} a^{4} + \frac{3767}{8512} a^{3} - \frac{85}{336} a^{2} - \frac{1}{56} a + \frac{939}{2912}$, $\frac{1}{995904} a^{13} + \frac{59}{38304} a^{11} + \frac{101}{76608} a^{10} - \frac{307}{55328} a^{9} + \frac{397}{798} a^{8} + \frac{10739}{76608} a^{7} + \frac{65}{2128} a^{6} - \frac{195743}{497952} a^{5} + \frac{15907}{76608} a^{4} - \frac{1669}{4256} a^{3} + \frac{1}{28} a^{2} - \frac{199}{8736} a + \frac{37}{112}$, $\frac{1}{1991808} a^{14} - \frac{1}{1991808} a^{13} - \frac{13}{153216} a^{11} - \frac{3251}{1991808} a^{10} + \frac{47}{20748} a^{9} + \frac{6155}{153216} a^{8} - \frac{5}{8064} a^{7} - \frac{23435}{165984} a^{6} + \frac{48547}{104832} a^{5} + \frac{34175}{153216} a^{4} - \frac{2209}{6384} a^{3} + \frac{991}{5824} a^{2} - \frac{317}{2496} a - \frac{55}{112}$, $\frac{1}{290833845120} a^{15} + \frac{2305}{19388923008} a^{14} + \frac{54667}{145416922560} a^{13} + \frac{1465}{4474366848} a^{12} + \frac{312909349}{290833845120} a^{11} + \frac{186380333}{145416922560} a^{10} + \frac{1083116693}{290833845120} a^{9} - \frac{344278811}{1065325440} a^{8} + \frac{62223186803}{145416922560} a^{7} - \frac{51787432001}{290833845120} a^{6} + \frac{33476674787}{290833845120} a^{5} + \frac{795344869}{1597988160} a^{4} + \frac{273260081}{692461536} a^{3} + \frac{122394929}{2551174080} a^{2} + \frac{586233029}{1275587040} a + \frac{11930661}{32707360}$, $\frac{1}{739595951705243035847866230166700160} a^{16} + \frac{1533134587676672336137}{1416850482193952175953766724457280} a^{15} + \frac{9323249558105347909152486883}{56891996285018695065220479243592320} a^{14} - \frac{40357374450626409994043910253}{246531983901747678615955410055566720} a^{13} - \frac{146444236848697364712251182693}{369797975852621517923933115083350080} a^{12} - \frac{486069342623012298035361543658081}{246531983901747678615955410055566720} a^{11} + \frac{5304216093290213127320372805901}{1961792975345472243628292387710080} a^{10} - \frac{1030560048803676743859754826249191}{123265991950873839307977705027783360} a^{9} + \frac{233923566891287358513621476402566409}{739595951705243035847866230166700160} a^{8} - \frac{12935238001389775711510019562517991}{27392442655749742068439490006174080} a^{7} + \frac{2506104564644449840253323537947013}{28445998142509347532610239621796160} a^{6} - \frac{3198818082934569629486873165354367}{27392442655749742068439490006174080} a^{5} - \frac{1235548934612989524213339837852179}{2934904570258900935904231072090080} a^{4} - \frac{15707566922852101547013457053269477}{61632995975436919653988852513891680} a^{3} + \frac{6083515293499868459406185307493}{23764409475780574379791344713280} a^{2} - \frac{35004252105174296040153951751587}{72085375409867742285367078963616} a - \frac{14047542906067439498597702789657}{77234330796286866734321870318160}$, $\frac{1}{59952295666257636992657587365493485641374382033280} a^{17} - \frac{25741956973573}{59952295666257636992657587365493485641374382033280} a^{16} - \frac{644915343265484530768906908932422457}{1498807391656440924816439684137337141034359550832} a^{15} + \frac{6779573660513168116314554324298269705482193}{59952295666257636992657587365493485641374382033280} a^{14} + \frac{1125873189999452424154329186078293694081101}{2606621550706853782289460320238847201798886175360} a^{13} + \frac{8803382721961343236033592294817305359410097}{29976147833128818496328793682746742820687191016640} a^{12} + \frac{72348573616855321399749132525077155122769317449}{59952295666257636992657587365493485641374382033280} a^{11} + \frac{52296415805273654055643092500339450867978238019}{59952295666257636992657587365493485641374382033280} a^{10} + \frac{603235371941858177070064327906759771925200253}{1303310775353426891144730160119423600899443087680} a^{9} + \frac{29436525940740182264057627258637391573324756720183}{59952295666257636992657587365493485641374382033280} a^{8} - \frac{23645663646046231904579440753632904210246220217379}{59952295666257636992657587365493485641374382033280} a^{7} - \frac{6499291803898201683682510259489971708597544952577}{29976147833128818496328793682746742820687191016640} a^{6} - \frac{211017257258215371347657071060310787538111718863}{2498012319427401541360732806895561901723932584720} a^{5} - \frac{54832861301937649964034675312498484419193169033}{138778462190411196742262933716420105651329588040} a^{4} - \frac{3408625005065191943304671015219268953650022305271}{9992049277709606165442931227582247606895730338880} a^{3} + \frac{3958293291680586835339474764919563914841431119}{12521365009661160608324475222534144870796654560} a^{2} - \frac{32650305650312047200445187130683043888849966431}{87649555067628124258271326557739014095576581920} a + \frac{1345867076751728773019456481181723602708347323}{87649555067628124258271326557739014095576581920}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{18}\times C_{54}\times C_{54}\times C_{54}$, which has order $18596183472$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{112284034646975309}{2979658902119740614030588086089440} a^{17} - \frac{315992436376391371}{224879917141112499172119855553920} a^{16} - \frac{17371203226484653513}{1489829451059870307015294043044720} a^{15} - \frac{56160165290490089451}{165536605673318923001699338116080} a^{14} + \frac{4984227264200708337}{14394487449853819391452116357920} a^{13} - \frac{142168536878316401744617}{2979658902119740614030588086089440} a^{12} + \frac{689620514842733060202743}{1489829451059870307015294043044720} a^{11} - \frac{36214132571070071797827983}{5959317804239481228061176172178880} a^{10} + \frac{2223126623414386157070541}{32387596762171093630767261805320} a^{9} - \frac{65643157605547019486250629}{248304908509978384502549007174120} a^{8} + \frac{2172581623001003812441027431}{331073211346637846003398676232160} a^{7} - \frac{34667208369123802171212376783}{1489829451059870307015294043044720} a^{6} + \frac{74543828298093710332519850299}{2979658902119740614030588086089440} a^{5} - \frac{655162128658898799143577230449}{1324292845386551384013594704928640} a^{4} - \frac{3627058506025022297564579333}{16553660567331892300169933811608} a^{3} - \frac{39510750716031395880875164331}{52274717581048080947905054141920} a^{2} + \frac{24759931968924168771289668078997}{34849811720698720631936702761280} a + \frac{53822756454218836608219919323}{435622646508734007899208784516} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34782068743257.96 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.8968323.1 x3, 3.1.186732.1, 6.0.104606519472.3, 6.0.241292452296987.1, 9.1.174565121124349094450651855424.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |