Normalized defining polynomial
\( x^{18} + 9 x^{16} - 4 x^{15} + 72 x^{14} + 162 x^{13} + 371 x^{12} + 198 x^{11} - 972 x^{10} + 2976 x^{9} + 10161 x^{8} + 40986 x^{7} + 67349 x^{6} + 63342 x^{5} + 188904 x^{4} + 273560 x^{3} + 182700 x^{2} + 147000 x + 122500 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-91176404162771495736000000000=-\,2^{12}\cdot 3^{24}\cdot 5^{9}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a$, $\frac{1}{70} a^{10} + \frac{1}{70} a^{9} + \frac{2}{7} a^{8} + \frac{3}{14} a^{7} - \frac{1}{35} a^{6} - \frac{17}{70} a^{5} + \frac{1}{14} a^{4} - \frac{2}{7} a^{3} - \frac{12}{35} a^{2} - \frac{1}{5} a$, $\frac{1}{70} a^{11} - \frac{1}{35} a^{9} + \frac{3}{7} a^{8} - \frac{17}{70} a^{7} + \frac{2}{7} a^{6} - \frac{3}{35} a^{5} + \frac{1}{7} a^{4} + \frac{31}{70} a^{3} + \frac{1}{7} a^{2} + \frac{2}{5} a$, $\frac{1}{70} a^{12} - \frac{3}{70} a^{9} - \frac{6}{35} a^{8} - \frac{2}{7} a^{7} + \frac{5}{14} a^{6} - \frac{12}{35} a^{5} + \frac{3}{35} a^{4} + \frac{1}{14} a^{3} - \frac{2}{7} a^{2} - \frac{2}{5} a$, $\frac{1}{70} a^{13} - \frac{1}{35} a^{9} + \frac{1}{14} a^{8} + \frac{1}{14} a^{6} + \frac{11}{70} a^{5} - \frac{3}{14} a^{4} + \frac{5}{14} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{700} a^{14} + \frac{3}{700} a^{13} - \frac{3}{700} a^{12} + \frac{1}{175} a^{11} - \frac{3}{700} a^{10} - \frac{1}{700} a^{9} - \frac{339}{700} a^{8} - \frac{22}{175} a^{7} + \frac{33}{700} a^{6} + \frac{13}{700} a^{5} - \frac{3}{700} a^{4} - \frac{53}{350} a^{3} + \frac{61}{175} a^{2} - \frac{1}{10} a$, $\frac{1}{3500} a^{15} - \frac{1}{1750} a^{14} - \frac{2}{875} a^{13} + \frac{19}{3500} a^{12} - \frac{3}{3500} a^{11} + \frac{6}{875} a^{10} - \frac{26}{875} a^{9} - \frac{149}{500} a^{8} + \frac{283}{3500} a^{7} - \frac{561}{1750} a^{6} - \frac{377}{875} a^{5} + \frac{9}{3500} a^{4} + \frac{361}{875} a^{3} - \frac{23}{350} a^{2} - \frac{1}{10} a$, $\frac{1}{49808500} a^{16} - \frac{363}{9961700} a^{15} - \frac{32657}{49808500} a^{14} - \frac{45401}{24904250} a^{13} + \frac{1331}{284620} a^{12} + \frac{47613}{49808500} a^{11} + \frac{224009}{49808500} a^{10} - \frac{677583}{24904250} a^{9} - \frac{19265133}{49808500} a^{8} - \frac{201393}{7115500} a^{7} + \frac{16101753}{49808500} a^{6} - \frac{1872331}{24904250} a^{5} + \frac{2857313}{12452125} a^{4} + \frac{41663}{254125} a^{3} - \frac{1442}{50825} a^{2} - \frac{2726}{10165} a - \frac{9}{2033}$, $\frac{1}{1266157908687432097169780500} a^{17} + \frac{1595589063889120771}{1266157908687432097169780500} a^{16} - \frac{42994440218103722330373}{316539477171858024292445125} a^{15} + \frac{575166109069646308058041}{1266157908687432097169780500} a^{14} - \frac{1703005985989842417674768}{316539477171858024292445125} a^{13} + \frac{3173734856230026058988443}{1266157908687432097169780500} a^{12} - \frac{1673110947447090159894792}{316539477171858024292445125} a^{11} + \frac{720472927102090607334909}{180879701241061728167111500} a^{10} + \frac{5869971339150645038162054}{316539477171858024292445125} a^{9} - \frac{200495036272274944053064249}{1266157908687432097169780500} a^{8} + \frac{315247882186872982879130471}{633078954343716048584890250} a^{7} + \frac{1667932915732757402635293}{180879701241061728167111500} a^{6} + \frac{1352089881744429136715811}{13327977986183495759681900} a^{5} - \frac{258052614539342161341056}{666398899309174787984095} a^{4} - \frac{16293687160963190597940453}{90439850620530864083555750} a^{3} - \frac{8466374072534420873854707}{18087970124106172816711150} a^{2} + \frac{100122686198350292545776}{258399573201516754524445} a - \frac{7678945245728718662529}{51679914640303350904889}$
Class group and class number
$C_{3}\times C_{18}$, which has order $54$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5817988.03207 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 3.1.140.1 x3, 3.1.11340.1 x3, 3.1.2835.1 x3, 3.1.11340.2 x3, 6.0.686000.1, 6.0.4500846000.2, 6.0.281302875.1, 6.0.4500846000.1, 9.1.51039593640000.10 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |