Normalized defining polynomial
\( x^{18} - 2 x^{17} + 4 x^{16} + 5 x^{15} + 13 x^{14} - 16 x^{13} + 41 x^{12} - 37 x^{11} + 69 x^{10} - 186 x^{9} + 472 x^{8} - 593 x^{7} + 672 x^{6} - 521 x^{5} + 389 x^{4} - 176 x^{3} + 75 x^{2} - 14 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-90466292782051905202183=-\,7^{15}\cdot 138041^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 138041$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6531246438175038513} a^{17} + \frac{931464178769619980}{6531246438175038513} a^{16} + \frac{87429576334092584}{2177082146058346171} a^{15} - \frac{326236891542603581}{2177082146058346171} a^{14} - \frac{174334883603684618}{2177082146058346171} a^{13} + \frac{256521342556548361}{2177082146058346171} a^{12} + \frac{647922219305653433}{6531246438175038513} a^{11} + \frac{733961953426405281}{2177082146058346171} a^{10} - \frac{1279602757500014492}{6531246438175038513} a^{9} - \frac{3227982328050994090}{6531246438175038513} a^{8} - \frac{11417584673749534}{2177082146058346171} a^{7} + \frac{124706503480878327}{2177082146058346171} a^{6} + \frac{425463774262945701}{2177082146058346171} a^{5} + \frac{148876985171158523}{6531246438175038513} a^{4} - \frac{2594598260087581102}{6531246438175038513} a^{3} + \frac{2026193310452020088}{6531246438175038513} a^{2} + \frac{3004196031686272049}{6531246438175038513} a + \frac{577968673645156053}{2177082146058346171}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{259342831713518151}{2177082146058346171} a^{17} + \frac{459630731190099236}{2177082146058346171} a^{16} - \frac{2944773866872619660}{6531246438175038513} a^{15} - \frac{1384032204875034442}{2177082146058346171} a^{14} - \frac{11736984314874132778}{6531246438175038513} a^{13} + \frac{9218801385610646651}{6531246438175038513} a^{12} - \frac{30624665720251911668}{6531246438175038513} a^{11} + \frac{26416311265897582859}{6531246438175038513} a^{10} - \frac{53943261266002365113}{6531246438175038513} a^{9} + \frac{139835447222656059148}{6531246438175038513} a^{8} - \frac{345162374807520876059}{6531246438175038513} a^{7} + \frac{412426255608845311115}{6531246438175038513} a^{6} - \frac{512228804703543861880}{6531246438175038513} a^{5} + \frac{405136398204612428458}{6531246438175038513} a^{4} - \frac{313573272722086409221}{6531246438175038513} a^{3} + \frac{143551287245058298858}{6531246438175038513} a^{2} - \frac{22941751901084899916}{2177082146058346171} a + \frac{13496060608073540563}{6531246438175038513} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22017.7641526 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n286 |
| Character table for t18n286 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.9.16240385609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 138041 | Data not computed | ||||||