Normalized defining polynomial
\( x^{18} - x^{17} + 20 x^{16} - 21 x^{15} + 120 x^{14} - 142 x^{13} + 174 x^{12} - 302 x^{11} - 405 x^{10} - 1196 x^{9} + 785 x^{8} - 6238 x^{7} + 9767 x^{6} + 981 x^{5} - 3327 x^{4} + 13403 x^{3} + 21875 x^{2} + 620 x + 22717 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8985052139278849963819823767311=-\,3^{9}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(111=3\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{111}(1,·)$, $\chi_{111}(70,·)$, $\chi_{111}(65,·)$, $\chi_{111}(10,·)$, $\chi_{111}(11,·)$, $\chi_{111}(77,·)$, $\chi_{111}(16,·)$, $\chi_{111}(46,·)$, $\chi_{111}(95,·)$, $\chi_{111}(34,·)$, $\chi_{111}(100,·)$, $\chi_{111}(101,·)$, $\chi_{111}(104,·)$, $\chi_{111}(41,·)$, $\chi_{111}(7,·)$, $\chi_{111}(110,·)$, $\chi_{111}(49,·)$, $\chi_{111}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7415767366721339600983887549343294947109} a^{17} - \frac{2462785049595615436919553479502327921311}{7415767366721339600983887549343294947109} a^{16} + \frac{774669895576947310736113670471801776335}{7415767366721339600983887549343294947109} a^{15} - \frac{1548545534084382552266979114771018098170}{7415767366721339600983887549343294947109} a^{14} + \frac{2356502744364577316694440055670972813355}{7415767366721339600983887549343294947109} a^{13} + \frac{454294533849196871405307581760709637290}{7415767366721339600983887549343294947109} a^{12} - \frac{3633924172154913711809080067885534031551}{7415767366721339600983887549343294947109} a^{11} + \frac{2013977797504593992879965315893322970533}{7415767366721339600983887549343294947109} a^{10} + \frac{193684202940283594169091672536397854431}{7415767366721339600983887549343294947109} a^{9} - \frac{1204929247890478317956721624745554396963}{7415767366721339600983887549343294947109} a^{8} + \frac{1212576010650177974592570695267056941992}{7415767366721339600983887549343294947109} a^{7} - \frac{483638872561937492501210904768618346046}{7415767366721339600983887549343294947109} a^{6} + \frac{2653194181267985353348771171461603565276}{7415767366721339600983887549343294947109} a^{5} - \frac{657224678249696879707869552084479205614}{7415767366721339600983887549343294947109} a^{4} + \frac{3061476643534552802712483448167331465620}{7415767366721339600983887549343294947109} a^{3} - \frac{569199575377776564275914979126162765414}{7415767366721339600983887549343294947109} a^{2} - \frac{3603261108065949328197138435933705130279}{7415767366721339600983887549343294947109} a - \frac{2492648156736596658877137399967543322686}{7415767366721339600983887549343294947109}$
Class group and class number
$C_{152}$, which has order $152$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.310213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), 3.3.1369.1, 6.0.1872286839.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | $18$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||